ImageVerifierCode 换一换
格式:PDF , 页数:9 ,大小:208.13KB ,
资源ID:519110      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-519110.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM D5191-2010 Standard Test Method for Vapor Pressure of Petroleum Products (Mini Method)《石油产品蒸气压力的标准试验方法(小型法)》.pdf)为本站会员(eventdump275)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM D5191-2010 Standard Test Method for Vapor Pressure of Petroleum Products (Mini Method)《石油产品蒸气压力的标准试验方法(小型法)》.pdf

1、Designation: D5191 10Standard Test Method forVapor Pressure of Petroleum Products (Mini Method)1This standard is issued under the fixed designation D5191; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A

2、 number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.1. Scope*1.1 This test method covers the use of automated vaporpr

3、essure instruments to determine the total vapor pressureexerted in vacuum by air-containing, volatile, liquid petroleumproducts, including automotive spark-ignition fuels with orwithout oxygenates (see Note 1). This test method is suitablefor testing samples with boiling points above 0C (32F) thatex

4、ert a vapor pressure between 7 and 130 kPa (1.0 and 18.6psi) at 37.8C (100F) at a vapor-to-liquid ratio of 4:1.Measurements are made on liquid sample sizes in the rangefrom 1 to 10 mL. No account is made for dissolved water in thesample.NOTE 1An interlaboratory study was conducted in 2008 involving

5、11different laboratories submitting 15 data sets and 15 different samples ofethanol-fuel blends containing 25 volume %, 50 volume %, and 75volume % ethanol. The results indicated that the repeatability limits ofthese samples are with in the published repeatability of this test method.on this basis,

6、it can be concluded that D5191 is applicable to ethanol-fuelblends such as Ed75 and Ed85 (Specification D5798) and other ethanol-fuel blends with greater than 10 v% ethanol. See ASTM RR: D021694filed with ASTM for supporting data.2NOTE 2Samples can also be tested at other vapor-to-liquid ratios,temp

7、eratures, and pressures, but the precision and bias statements need notapply.NOTE 3The interlaboratory studies conducted in 1988, 1991, and2003 to determine the precision statements in Test Method D5191 did notinclude any crude oil in the sample sets. Test Method D6377, as well asIP 481, have been s

8、hown to be suitable for vapor pressure measurementsof crude oils.1.1.1 Some gasoline-oxygenate blends may show a hazewhen cooled to 0 to 1C. If a haze is observed in 8.5, it shallbe indicated in the reporting of results. The precision and biasstatements for hazy samples have not been determined (see

9、Note 15).1.2 This test method is suitable for calculation of the dryvapor pressure equivalent (DVPE) of gasoline and gasoline-oxygenate blends by means of a correlation equation (see Eq 1in 14.2). The calculated DVPE very closely approximates thedry vapor pressure that would be obtained on the same

10、materialwhen tested by Test Method D4953.1.3 The values stated in SI units are regarded as standard.The inch-pound units given in parentheses are provided forinformation only.1.4 WARNINGMercury has been designated by manyregulatory agencies as a hazardous material that can causecentral nervous syste

11、m, kidney and liver damage. Mercury, orits vapor, may be hazardous to health and corrosive tomaterials. Caution should be taken when handling mercury andmercury containing products. See the applicable product Ma-terial Safety Data Sheet (MSDS) for details and EPAs website http:/www.epa.gov/mercury/f

12、aq.htm - for additional infor-mation. Users should be aware that selling mercury and/ormercury containing products into your state or country may beprohibited by law.1.5 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of t

13、he user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use. For specific safetywarning statements, see 7.2 through 7.8.2. Referenced Documents2.1 ASTM Standards:3D2892 Test Method for Distillation of Crude Pe

14、troleum(15-Theoretical Plate Column)D4057 Practice for Manual Sampling of Petroleum andPetroleum ProductsD4953 Test Method for Vapor Pressure of Gasoline andGasoline-Oxygenate Blends (Dry Method)D5798 Specification for Fuel Ethanol (Ed70-Ed85) forAutomotive Spark-Ignition EnginesD6299 Practice for A

15、pplying Statistical Quality Assuranceand Control Charting Techniques to Evaluate AnalyticalMeasurement System Performance1This test method is under the jurisdiction of ASTM Committee D02 onPetroleum Products and Lubricants and is the direct responsibility of SubcommitteeD02.08 on Volatility.Current

16、edition approved May 1, 2010. Published July 2010. Originally approvedin 1991. Last previous edition approved in 2007 as D519107. DOI: 10.1520/D5191-10.2Supporting data have been filed at ASTM International Headquarters and maybe obtained by requesting Research Report RR:D02-1694.3For referenced AST

17、M standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.1*A Summary of Changes section appears at the end of this standard.Copyright AST

18、M International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.D6377 Test Method for Determination of Vapor Pressure ofCrude Oil: VPCRx(Expansion Method)D6378 Test Method for Determination of Vapor Pressure(VPX) of Petroleum Products, Hydrocarbons, andHydrocarbo

19、n-Oxygenate Mixtures (Triple ExpansionMethod)2.2 IP Standard:IP 481 Test Method for Determination of the Air SaturatedVapour Pressure (ASVP) of Crude Oil42.3 EPA Standard:40 CFR Part 80Appendix E, Method 3 Test for DeterminingReid Vapor Pressure (RVP) of Gasoline and GasolineOxygenate BlendsEvacuate

20、d Chamber Method53. Terminology3.1 Definitions:3.1.1 fuel ethanol (Ed75Ed85)blend of ethanol and hy-drocarbon, of which the ethanol portion is nominally 75 to 85volume % denatured fuel ethanol.3.2 Definitions of Terms Specific to This Standard:3.2.1 absolute vapor pressurethe pressure of the air-fre

21、esample. It is calculated from the total vapor pressure of thesample by subtracting out the partial pressure of the dissolvedair.3.2.2 dry vapor pressure equivalent (DVPE)a value cal-culated by a correlation equation (see 14.2) from the totalvapor pressure.3.2.2.1 DiscussionThe DVPE is expected to b

22、e equivalentto the value obtained on the sample by Test Method D4953,Procedure A.3.2.3 total vapor pressure (Ptot)the observed pressuremeasured in the experiment that is the sum of the partialpressure of the sample and the partial pressure of the dissolvedair.3.3 Abbreviations:3.3.1 DVPEdry vapor pr

23、essure equivalent3.3.2 Ptottotal vapor pressure4. Summary of Test Method4.1 A known volume of chilled, air-saturated sample isintroduced into a thermostatically controlled, evacuated testchamber, or a test chamber with a moveable piston thatexpands the volume after sample introduction, the internalv

24、olume of which is five times that of the total test specimenintroduced into the chamber. After introduction into the testchamber, the test specimen is allowed to reach thermal equi-librium at the test temperature, 37.8C (100F). The resultingrise in pressure in the chamber is measured using a pressur

25、etransducer sensor and indicator. Only total pressure measure-ments (sum of the partial pressure of the sample and the partialpressure of the dissolved air) are used in this test method,although some instruments can measure the absolute pressureof the sample as well.4.2 The measured total vapor pres

26、sure is converted to a dryvapor pressure equivalent (DVPE) by use of a correlationequation (see Eq 1 in 14.2).5. Significance and Use5.1 Vapor pressure is a very important physical property ofvolatile liquids.5.2 The vapor pressure of gasoline and gasoline-oxygenateblends is regulated by various gov

27、ernment agencies.5.3 Specifications for volatile petroleum products generallyinclude vapor pressure limits to ensure products of suitablevolatility performance.5.4 This test method is more precise than Test MethodD4953, uses a small sample size (1 to 10 mL), and requiresabout 7 min to complete the t

28、est.6. Apparatus6.1 Vapor Pressure ApparatusThe type of apparatus suit-able for use in this test method employs a small volume testchamber incorporating a transducer for pressure measurementsand associated equipment for thermostatically controlling thechamber temperature and for evacuating the test

29、chamber priorto sample introduction or expanding the volume after sampleintroduction by a moveable piston.6.1.1 The test chamber shall be designed to contain between5 and 50 mL of liquid and vapor and be capable of maintaininga vapor-to-liquid ratio between 3.95 to 1.00 and 4.05 to 1.00.NOTE 4The te

30、st chamber employed by the instruments used ingenerating the precision and bias statements were constructed of stainlesssteel, aluminum, or brass.NOTE 5Test chambers exceeding a 15 mL capacity can be used, butthe precision and bias statements (see Section 16) are not known to apply.6.1.2 The pressur

31、e transducer shall have a minimum opera-tional range from 0 to 177 kPa (0 to 25.7 psi) with a minimumresolution of 0.1 kPa (0.01 psi) and a minimum accuracy of60.8 kPa (60.12 psi). The pressure measurement system shallinclude associated electronics and readout devices to displaythe resulting pressur

32、e reading.6.1.3 A thermostatically controlled heater shall be used tomaintain the test chamber at 37.8 6 0.1C (100 6 0.2F) forthe duration of the vapor pressure measurement.6.1.4 A platinum resistance thermometer shall be used formeasuring the temperature of the test chamber with a resolu-tion of 0.

33、1C (0.2F) and an accuracy of 0.1C (0.2F).6.1.5 The vapor pressure apparatus shall have provisions forintroduction of the test specimen into an evacuated testchamber, or into a test chamber by a moveable piston, and forthe cleaning or purging of the chamber following or precedingthe test.6.2 Vacuum P

34、ump, capable of reducing the pressure in thetest chamber to less than 0.01 kPa (0.001 psi) absolute.6.3 Syringe, (optional, depending on sample introductionmechanism employed with each instrument) gas-tight, 1 to 20mL capacity with a 61 % or better accuracy and a 61%orbetter precision. If a syringe

35、is used to measure the samplevolume, the capacity of the syringe should not exceed twotimes the volume of the test specimen being dispensed.4Available from the Energy Institute, 61 New Cavendish St., London, WIG 7AR,U.K.5Available from the EPA Web site at http:/www.epa.gov/docs/epacfr40/chapt-I-info

36、/D5191 1026.4 Iced Water Bath, Refrigerator, or Air Bath, for chillingthe samples and syringe to temperatures between 0 to 1C (32to 34F).6.5 Pressure Measuring Device, capable of measuring localstation pressure with an accuracy of 0.20 kPa (0.03 psi), orbetter, at the same elevation relative to sea

37、level as theapparatus in the laboratory.6.5.1 When a mercury barometer is not used as the pressuremeasuring device, the calibration of the pressure measuringdevice employed shall be periodically checked (with traceabil-ity to a nationally recognized standard) to ensure that thedevice remains within

38、the required accuracy specified in 6.5.6.6 McLeod Vacuum Gage or Calibrated Electronic VacuumMeasuring Device for Calibration, to cover at least the rangefrom 0.01 to 0.67 kPa (0.1 to 5 mm Hg). The calibration of theelectronic vacuum measuring device shall be regularly verifiedin accordance with the

39、 annex section on Vacuum Sensors(A6.3) of Test Method D2892.7. Reagents and Materials7.1 Purity of ReagentsUse chemicals of at least 99 %purity for verification of instrument performance (see Section11). Unless otherwise indicated, it is intended that all reagentsconform to the specifications of the

40、 Committee on AnalyticalReagents of the American Chemical Society where suchspecifications are available.6Lower purities can be used,provided it is first ascertained that the reagent is of sufficientpurity to permit its use without lessening the accuracy of thedetermination.7.1.1 The chemicals in se

41、ctions 7.3, 7.4, 7.7, and 7.8(blended by mass with pentane) are suggested for verificationof instrument performance (see Section 11), based on thereference fuels analyzed in the 2003 interlaboratory study(ILS)7(see Table 1). Such reference fuels are not to be used forinstrument calibration. Table 1

42、identifies the accepted referencevalue (ARV) and uncertainty limits, as well as the acceptabletesting range for each of the reference fuels listed.NOTE 6Verification fluids reported by 28 of the 29 D5191 data setparticipants in the 2003 ILS7included the following (with number of datasets identified

43、in parenthesis): 2,2-dimethylbutane (18), cyclopentane (5),pentane (2), 2,3-dimethylbutane (1), 3-methylpentane (1), and methanol(1).7.2 Cyclopentane,(WarningCyclopentane is flammableand a health hazard).7.3 2,2-Dimethylbutane,(Warning2,2-dimethylbutane isflammable and a health hazard).7.4 2,3-Dimet

44、hylbutane,(Warning2,3-dimethylbutane isflammable and a health hazard).7.5 Methanol,(WarningMethanol is flammable and ahealth hazard).7.6 2-Methylpentane,(Warning2-methylpentane is flam-mable and a health hazard).7.7 Pentane,(WarningPentane is flammable and a healthhazard).7.8 Toluene,(WarningToluene

45、 is flammable and a healthhazard).8. Sampling8.1 General Requirements:8.1.1 The extreme sensitivity of vapor pressure measure-ments to losses through evaporation and the resulting changesin composition is such as to require the utmost precaution andthe most meticulous care in the drawing and handlin

46、g ofsamples.8.1.2 Obtain a sample and test specimen in accordance withPractice D4057, except do not use the “Sampling by WaterDisplacement” section for fuels containing oxygenates. Useeither a 250-mL or 1-L (1-qt) sized container filled between 70and 80 % with sample. For best testing precision (rep

47、roduc-ibility), it is recommended that a 1-L sized container be used.NOTE 7The current precision statements were derived from the 2003ILS7using samples in 250-mL and 1-L (1-qt) clear glass containers.However, samples in containers of other sizes, as prescribed in PracticeD4057, may be used with the

48、same ullage requirement if it is recognizedthat the precision can be affected. The differences in precision resultsobtained from 250-mL and 1-L containers were found to be statisticallysignificant, whereas there was no statistically observable bias detectedbetween 250-mL and 1-L containers. See Tabl

49、es 2 and 3, as well as Figs.1 and 2 for more specific details on precision differences as a function of6Reagent Chemicals, American Chemical Society Specifications, AmericanChemical Society, Washington, DC. For Suggestions on the testing of reagents notlisted by the American Chemical Society, see Annual Standards for LaboratoryChemicals, BDH Ltd., Poole, Dorset, U.K., and the United States Pharmacopeiaand National Formulary, U.S. Pharmacopeial Convention, Inc. (USPC), Rockville,MD.7Supporting data have been filed at ASTM International Hea

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1