ImageVerifierCode 换一换
格式:PDF , 页数:4 ,大小:69.18KB ,
资源ID:519140      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-519140.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM D5198-2009 Standard Practice for Nitric Acid Digestion of Solid Waste《固体废弃物的硝酸处理的标准方法》.pdf)为本站会员(王申宇)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM D5198-2009 Standard Practice for Nitric Acid Digestion of Solid Waste《固体废弃物的硝酸处理的标准方法》.pdf

1、Designation: D 5198 09Standard Practice forNitric Acid Digestion of Solid Waste1This standard is issued under the fixed designation D 5198; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A number in pare

2、ntheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This practice describes the digestion of solid wasteusing nitric acid for the subsequent determination of inorganicconstituents by plasma emission sp

3、ectroscopy or atomic ab-sorption spectroscopy.1.2 The following elements may be solubilized by thispractice:aluminum manganeseberyllium mercurycadmium nickelchromium phosphoruscopper vanadiumiron zinclead1.3 This practice is to be used when the concentrations oftotal recoverable elements are to be d

4、etermined from a wastesample. Total recoverable elements may or may not be equiva-lent to total elements, depending on the element sought and thesample matrix. Recovery from refractory sample matrices,such as soils, is usually significantly less than total concentra-tions of the elements present.NOT

5、E 1This practice has been used successfully for oily sludges anda municipal digested sludge standard Environmental Protection Agency(EPA) Sample No. 397. The practice may be applicable to some elementsnot listed above, such as arsenic, barium, selenium, cobalt, magnesium,and calcium. Refractory elem

6、ents such as silicon, silver, and titanium, aswell as organo-mercury are not solubilized by this practice.1.4 This practice has been divided into two methods, A andB, to account for the advent of digestion blocks. Method Autilizes an electric hot plate; Method B utilizes an electricdigestion block.1

7、5 The values stated in SI units are to be regarded asstandard. No other units of measurement are included in thisstandard.1.6 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro

8、priate safety and health practices and determine the applica-bility of regulatory limitations prior to use. For specific hazardstatements, see Section 7.2. Referenced Documents2.1 ASTM Standards:2D 1193 Specification for Reagent Water3. Summary of Practice3.1 A weighed portion of the waste sample i

9、s mixed with1 + 1 nitric acid (HNO3) in an Erlenmeyer flask. The flask isheated for2hat90to95C to dissolve the elements of interest.After cooling, the contents of the flask are diluted with reagentwater and filtered, and the filtrate is made up to appropriatevolume for subsequent analysis.4. Signifi

10、cance and Use4.1 A knowledge of the inorganic composition of a waste isoften required for the selection of appropriate waste disposalpractices. Solid waste may exist in a variety of forms andcontain a range of organic and inorganic constituents. Thispractice describes a digestion procedure which dis

11、solves manyof the toxic inorganic constituents and produces a solutionsuitable for determination by such techniques as atomic ab-sorption spectroscopy, atomic emission spectroscopy, and soforth. The relatively large sample size aids representativesampling of heterogenous wastes. The relatively small

12、 dilutionfactor allows lower detection limits than most other sampledigestion methods. Volatile metals, such as lead and mercury,are not lost during this digestion procedure, however organo-lead and organo-mercury may not be completely digested.Hydride-forming elements, such as arsenic and selenium,

13、 maybe partially lost. Samples with total metal contents greater than5 % may give low results. The analyst is responsible fordetermining whether this practice is applicable to the solidwaste being tested.1This practice is under the jurisdiction of ASTM Committee D34 on WasteManagement and is the dir

14、ect responsibility of Subcommittee D34.01.06 onAnalytical Methods.Current edition approved Feb. 1, 2009. Published March 2009. Originallyapproved in 1992. Last previous edition approved in 2003 as D 5198 92 (2003).2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM C

15、ustomer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.METHOD A HOT PLATE5. Apparatus5.

16、1 Analytical Balance, capable of weighing to 0.01 g.5.2 Erlenmeyer Flasks, 125 mL.5.3 Graduated Cylinder,50mL.5.4 Electric Hot Plate, adjustable, capable of maintaining atemperature of 90 to 95C.5.5 Watch Glasses.5.6 Thermometer.5.7 Funnels, glass or plastic.5.8 Volumetric Flasks, glass-stoppered, 2

17、00 mL.5.9 Filter Paper, quantitative, medium flow rate, WhatmanNo. 40 or equivalent.5.10 Fume Hood.6. Reagents6.1 Purity of ReagentsReagent grade chemicals shall beused in all tests. Unless otherwise indicated, it is intended thatall reagents shall conform to the specifications of the Commit-tee on

18、Analytical Reagents of the American Chemical Society,where such specifications are available.3Other grades may beused, provided it is first ascertained that the reagent is ofsufficiently high purity to permit its use without lessening theaccuracy of the determination.6.2 Purity of WaterUnless otherw

19、ise indicated, referenceto water shall be understood to mean reagent water as definedby Type II of Specification D 1193.6.3 Nitric Acid, concentrated, reagent grade.6.4 Nitric Acid (1+1)Add slowly, with stirring, 200 mL ofconcentrated nitric acid (HNO3, sp gr 1.42) to 200 mL water.Cool the mixture a

20、nd store in a clean pint glass bottle.7. Hazards7.1 Add the nitric acid mixture slowly, with swirling, to thesample. Samples containing carbonates may foam excessivelyduring acid addition and result in loss of sample. Nitric acidmay react violently with some samples containing organicmaterial.7.2 Ad

21、dition of acid and sample digestion must be con-ducted in a hood with adequate ventilation and shielding toavoid contact with nitrogen oxides, acid fumes, or toxic gases.8. Procedure8.1Weigh5gofathoroughly mixed waste sample to thenearest 0.01 g into a tared Erlenmeyer flask.8.2 With a graduated cyl

22、inder, slowly add 25 mL of 1+1nitric acid to the flask. Swirl the flask to wet the samplecompletely.8.3 Carry a blank of 25 mL of 1+1 nitric acid through theprocedure.8.4 Place the flask on a cold hot plate, cover with a watchglass, and set the hot plate to maintain a temperature of 90 to95C.8.5 Hea

23、t the flask and contents for 2 h, occasionally swirlingthe flask to wash down any sample adhering to the walls.Check the solution temperature with the thermometer andadjust the heat if necessary.8.6 After 2 h, remove the flask from the hot plate and coolto room temperature. Add 50 mL of reagent wate

24、r to the flask,washing down the flask walls during addition. Swirl the flask tomix the contents.8.7 Filter the contents of the flask into a 200 mL volumetricflask. Rinse the flask and filter paper with several smallportions of reagent water and add the rinsings to the volumetricflask.8.8 Dilute the

25、solution in the volumetric flask to the markwith reagent water and mix thoroughly. The solution is nowready for analysis.METHOD B DIGESTION BLOCK9. Apparatus9.1 Analytical Balance, capable of weighing to 0.01 g.9.2 Fume Hood.9.3 Graduated Digestion Tubes.9.4 Graduated Cylinder,50mL.9.5 Digestion Tub

26、e Filters.9.6 Digestion Block, adjustable, capable of maintaining atemperature of 90 to 95C.10. Reagents10.1 Purity of ReagentsReagent grade chemicals shall beused in all tests. Unless otherwise indicated, it is intended thatall reagents shall conform to the specifications of the Commit-tee on Analy

27、tical Reagents of the American Chemical Society,where such specifications are available.3Other grades may beused, provided it is first ascertained that the reagent is ofsufficiently high purity to permit its use without lessening theaccuracy of the determination.3Reagent Chemicals, American Chemical

28、 Society Specifications , Am. ChemicalSoc., Washington, DC. For suggestions on the testing of reagents not listed by theAmerican Chemical Society, see Reagent Chemicals and Standards, by JosephRosin, D. Van Nostrand Co., Inc., New York, NY, and the United States Pharma-copeia .D519809210.2 Purity of

29、 WaterUnless otherwise indicated, referenceto water shall be understood to mean reagent water as definedby Type II of Specification D 1193.10.3 Nitric Acid, concentrated, reagent grade.10.4 Nitric Acid (1 + 1)Add slowly, with stirring, 200 mLof concentrated nitric acid (HNO3, sp gr 1.42) to 200 mL w

30、ater.Cool the mixture and store in a clean pint glass bottle.11. Hazards11.1 Add the nitric acid mixture slowly, with swirling, to thesample. Samples containing carbonites may foam excessivelyduring acid addition and result in loss of sample. Nitric acidmay react violently with some samples containi

31、ng organicmaterial.11.2 Addition of acid and sample digestion must be con-ducted in a hood with adequate ventilation and shielding toavoid contact with nitrogen oxides, acid fumes, or toxic gases.12. Procedure12.1 Weigh5gofathoroughly mixed waste sample to thenearest 0.01 g and transfer into a gradu

32、ated digestion tube.12.2 With a graduated cylinder, slowly add 25 mL of 1 + 1nitric acid to the digestion tube. Swirl the tube to wet thesample completely.12.3 Carry a blank of 25 mL of1+1nitric acid through theprocedure.12.4 Place the digestion tube in a digestion block in a fumehood and set the di

33、gestion block to maintain a temperature of90 to 95C.12.5 Heat the tube and contents for 2 h, until a volume ofapproximately 15 mL remains.12.6 After 2 h, remove the tube from the digestion block andcool to room temperature.12.7 Filter the contents of the tube with a digestion tubefilter.12.8 Dilute

34、the solution to 50 mL. The solution is now readyfor analysis.13. Precision and Bias13.1 No statement is made about either the precision or biassince this practice does not produce a test result. Appendix X1contains representative results obtained with this practice(Method A) and subsequent analysis.

35、14. Keywords14.1 digestion; nitric acid; wasteAPPENDIX(Nonmandatory Information)X1. REPRESENTATIVE ANALYSES OF SAMPLES AFTER NITRIC ACID DIGESTIONTABLE X1.1 Nitric Acid DigestionAnalysis of Standard SludgeSample (EPA Sample No. 397)ElementConcentration, mg/kgPercentRecoveryActual FoundZn 1323 1300 9

36、8Mn 205 235 115Pb 519 500 96Cd 20.8 24.1 116Cr 204 218 107Fe 16 155 16 400 102V 13.0 12.7 98Cu 1095 1130 103Ni 198 186 94Al 4558 4500 99Ti 2121 95 4.5P 11 573 11 800 102Be 0.28 0.5 179As 17 9 53Ag 81 7.4 9.1Hg 16.3 13.6 83TABLE X1.2 Nitric Acid DigestionReplicate Analysis of UsedMotor Oil, mg/kgElem

37、ent Run 1 Run 2 Run 3Zn 1170 1150 1170Mn 2.5 2.1 2.1Pb 43 40 35Cd 0.6 0.5 0.4Cr 2.8 2.1 2.3Fe 74 66 66V 1.32 1.04 0.92Cu 3.8 3.6 3.6Ni 0.7 NDA0.7 ND 0.7 NDBa 0.6 0.5 0.5Be 0.04 ND 0.04 ND 0.04 NDHg 0.08 ND 0.08 ND 0.08 NDAND = not detected at the detection limit shown.D5198093ASTM International take

38、s no position respecting the validity of any patent rights asserted in connection with any item mentionedin this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the riskof infringement of such rights, are entirely their own res

39、ponsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years andif not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standardsand should be address

40、ed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of theresponsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you shouldmake your views known to the ASTM Committee on Standards, at the

41、 address shown below.This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959,United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the aboveaddress or at 610-832-9585 (pho

42、ne), 610-832-9555 (fax), or serviceastm.org (e-mail); or through the ASTM website(www.astm.org).TABLE X1.3 Nitric Acid DigestionRecovery of Used Motor OilMatrix SpikesElementmg/kgPercentRecoveryAdded FoundMn 3.2 3.3 103Pb 3.4 3.0 88Cd 2.0 1.6 80Cr 2.0 2.4 120V 2.6 1.0 38Cu 2.2 4.2 191Ni 2.8 2.75 98Ba 2.3 2.1 91Be 1.6 1.3 81Hg 0.08 0.09 113D5198094

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1