ImageVerifierCode 换一换
格式:PDF , 页数:5 ,大小:93.75KB ,
资源ID:519679      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-519679.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM D5399-2004(2009) Standard Test Method for Boiling Point Distribution of Hydrocarbon Solvents by Gas Chromatography.pdf)为本站会员(wealthynice100)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM D5399-2004(2009) Standard Test Method for Boiling Point Distribution of Hydrocarbon Solvents by Gas Chromatography.pdf

1、Designation: D 5399 04 (Reapproved 2009)Standard Test Method forBoiling Point Distribution of Hydrocarbon Solvents by GasChromatography1This standard is issued under the fixed designation D 5399; the number immediately following the designation indicates the year oforiginal adoption or, in the case

2、of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope*1.1 This test method covers the determination of the boilingpoint distribution of hydrocarbon so

3、lvents by capillary gaschromatography. This test method is limited to samples havinga minimum initial boiling point of 37C (99F), a maximumfinal boiling point of 285C (545F), and a boiling range of 5to 150C (9 to 270F) as measured by this test method.1.2 For purposes of determining conformance of an

4、 ob-served or calculated value using this test method to relevantspecifications, test result(s) shall be rounded off “to the nearestunit” in the last right-hand digit used in expressing thespecification limit, in accordance with the rounding-off methodof Practice E29.1.3 The values stated in SI unit

5、s are standard. The valuesgiven in parentheses are for information purposes only.1.4 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and de

6、termine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2D86 Test Method for Distillation of Petroleum Products atAtmospheric PressureD 850 Test Method for Distillation of Industrial AromaticHydrocarbons and Related MaterialsD 1078 Test Method for

7、Distillation Range of VolatileOrganic LiquidsD 2887 Test Method for Boiling Range Distribution ofPetroleum Fractions by Gas ChromatographyD 2892 Test Method for Distillation of Crude Petroleum(15-Theoretical Plate Column)D 3710 Test Method for Boiling Range Distribution ofGasoline and Gasoline Fract

8、ions by Gas ChromatographyE29 Practice for Using Significant Digits in Test Data toDetermine Conformance with SpecificationsE 691 Practice for Conducting an Interlaboratory Study toDetermine the Precision of a Test Method3. Terminology3.1 Definitions:3.1.1 initial boiling point (IBP), nthe point at

9、which acumulative area count equal to 0.5 % of the total area under thechromatogram is obtained.3.1.2 final boiling point (FBP), nthe point at which acumulative area count equal to 99.5 % of the total area underthe chromatogram is obtained.4. Summary of Test Method4.1 The sample is introduced into a

10、 capillary gas chromato-graphic column that separates hydrocarbons in the order ofincreasing boiling point. The column temperature is raised at areproducible rate and the area under the chromatogram isrecorded throughout the run. Boiling points are assigned froma calibration curve obtained under the

11、 same conditions byrunning a known mixture of hydrocarbons covering the boilingrange expected in the sample. From these data, the boilingpoint distribution of the sample is obtained.5. Significance and Use5.1 The gas chromatographic determination of the boilingpoint distribution of hydrocarbon solve

12、nts can be used as analternative to conventional distillation methods for control ofsolvents quality during manufacture, and specification testing.5.2 Boiling point distribution data can be used to monitorthe presence of product contaminants and compositional varia-tion during the manufacture of hyd

13、rocarbon solvents.1This test method is under the jurisdiction of ASTM Committee D01 on Paintand Related Coatings, Materials, and Applications and is the direct responsibility ofSubcommittee D01.35 on Solvents, Plasticizers, and Chemical Intermediates.Current edition approved June 1, 2009. Published

14、June 2009. Originallyapproved in 1993. Last previous edition approved in 2004 as D 5399 04.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Su

15、mmary page onthe ASTM website.1*A Summary of Changes section appears at the end of this standard.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.5.3 Boiling point distribution data obtained by this testmethod are not equivalent to tho

16、se obtained by Test MethodsD86, D 850, D 1078, D 2887, D 2892, and D 3710.6. Apparatus6.1 ChromatographAny gas chromatograph that canhandle capillary column and has the following characteristics:6.1.1 DetectorA flame ionization detector (FID) capableof continuous operation at a temperature equivalen

17、t to themaximum column temperature employed.6.1.2 Column Temperature ProgrammerThe chromato-graph must be capable of reproducible linear temperatureprogramming over a range sufficient to establish a retentiontime of 1 min for n-pentane and to allow elution of entiresample within a reasonable time pe

18、riod.6.1.3 Sample Inlet SystemThe sample inlet system mustbe capable of operating continuously at a temperature up to themaximum column temperature employed, or provide on-column injection.NOTE 1The use of cool, on-column injection using an automaticinjector or sampler has been shown to provide bett

19、er precision relative tomanual injection.6.1.4 ColumnA 10 to 30 m by 0.53 mm inside diameterby 3-m bonded methyl silicone, fused silica, or equivalentcolumn that elutes components in order of boiling points, andmeets the resolution criteria specified in 8.2 must be used (see8.4).6.1.5 IntegratorMean

20、s must be provided for determiningthe accumulated area under the chromatogram. This can bedone by means of a computer or electronic integrator. A timingdevice can be used to record the area at set time intervals. Thesame basis for measuring time must be used to determine theretention times in the ca

21、libration, and the sample. The maxi-mum signal measured must be within the linear range of themeasuring system used.6.1.6 Flow ControllerThe chromatograph must beequipped with a constant-flow device capable of maintainingthe carrier gas at a constant flow rate throughout the tempera-ture program.6.1

22、.7 Sample IntroductionA microsyringe is required forthe introduction of the sample to the gas chromatograph (seeNote 1).7. Reagents and Materials7.1 Purity of ReagentsReagent grade chemicals shall beused in the preparation of the calibration mixture.7.2 Calibration MixtureA synthetic blend of pure l

23、iquidhydrocarbons of known boiling points. The components of thecalibration mixture are listed in Table 1 and prepared bymixing equivolume quantities of the components. At least onecomponent in the mixture must have a boiling point equal to orlower than the initial boiling point of the sample, and o

24、necomponent must have a retention time greater than anycomponent in the sample.7.3 Carrier Gas, helium (high purity)Additional purifica-tion is recommended by the use of molecular sieves or othersuitable agents to remove water, oxygen, and hydrocarbons.7.3.1 Warning: Helium is a compressed gas under

25、 highpressure.7.4 Detector Gases, air, hydrogen (high purity)Additionalpurification for air and hydrogen is recommended by the use ofmolecular sieves, activated carbons, or other suitable agents toremove water and organics.7.4.1 Warning: Air and hydrogen are compressed gasesunder high pressure. Hydr

26、ogen is an extremely flammable gas.8. Preparation of Apparatus8.1 Column PreparationThe column must be conditionedat the maximum operating temperature to reduce baseline shiftsdue to bleeding of column substrate.NOTE 2The column can be conditioned using the following proce-dure:(a) Disconnect the co

27、lumn from the detector,(b) Purge the column at ambient temperature with carriergas for at least 30 min,(c) With carrier gas flowing through the column, raise thecolumn temperature to the maximum operating temperatureand maintain the temperature at this level for 12 to 16 h,(d) Cool the column to amb

28、ient temperature,(e) Reconnect the column to the detector,(f) Set the detector temperature to at least 5C higher thanthe maximum column temperature, and(g) Program the column temperature up to the maximumseveral times with normal carrier flow until a stable, flatbaseline is obtained.8.2 Column Resol

29、utionTo test column resolution, injectthe same volume of the calibration mixture as used duringnormal sample analysis and obtain the chromatogram by theprocedure described in Section 9. Using the n-dodecane (C12)and n-tridecane (C13) peaks, and Fig. 1, calculate the resolu-tion, R, as calculated fro

30、m the equation:R 5 2D/Y11 Y2! (1)where:D = time, s, between n-C12and n-C13apexes,Y1= peak width of n-C12,s,andY2= peak width of n-C13,s.The resolution, R, thus calculated must be between eight andtwelve to be acceptable.TABLE 1 Calibration MixturePeak Number Compound Identification Normal Boiling Po

31、int, C1 n-Pentane 36.12 2-Methyl Pentane 60.03 n-Hexane 68.94 2,4-Dimethyl Pentane 80.65 n-Heptane 98.36 Toluene 110.67 n-Octane 125.68 p-Xylene 138.39 n-Propyl Benzene 159.410 n-Decane 173.911 n-Butyl Benzene 183.312 n-Dodecane 216.113 n-Tridecane 235.614 n-Tetradecane 253.915 n-Pentadecane 270.616

32、 n-Hexadecane 287.2D 5399 04 (2009)28.3 Skewing of PeaksCalculate the ratio A/B on peaks inthe calibration mixture as shown in Fig. 2. Call the width inseconds of the part of the peak ahead of the time of the apex at5 % of peak height A, and call B to equal the width in secondsof the part of the pea

33、k after the time of the apex at 5 % of peakheight. This ratio must not be less than 0.5 nor more than 2.08.4 Typical instrument parameters are as follows:8.4.1 Column length equals 10 to 30 m,8.4.2 Column material and size equal fused silica or glass,0.53 to 0.75 mm inside diameter,8.4.3 Liquid phas

34、e equals bonded methyl silicone or equiva-lent,8.4.4 Column film thickness equals 3 to 5 m,8.4.5 Initial column temperature equals 35C (95F),8.4.6 Initial hold equals 2 min,8.4.7 Program rate equals 10 to 20C (18 to 36F)/min,8.4.8 Final temperature equals 225C (437F) to 280C(536F),8.4.9 Final time e

35、quals 2 min,8.4.10 Injector temperature equals cool, on-column,8.4.11 Detector temperature equals 250C (482F),8.4.12 Detector range (HP) equals 6 to 8,8.4.13 Carrier gas flow rate equals 8 to 10 mL/min, and8.4.14 Sample size equals 0.1 to 0.5 L.9. Procedure9.1 CalibrationAfter preparing the apparatu

36、s as in Sec-tion 8, inject the calibration mixture into the gas chromato-graph. Record the data in such a manner that the retentiontimes of peak maxima and the peak areas for each componentare obtained.9.1.1 The sample size of the calibration mixture must bechosen as to avoid distortion of the indiv

37、idual component peakshape caused by overloading the sample capacity of thecolumn. Distortion in retention time measurement and henceerrors in boiling point distribution will be likely with columnoverloading. Sample size of 0.1 to 0.5 L have been shown togive good results.9.1.2 This test method requi

38、res the use of commerciallyavailable “Simulated Distillation” softwares3to process thechromatographic data in order to obtain good precision ofresults. Calibration of the gas chromatographic method can bedone by inputting the retention times, and the normal boilingpoints of each of the components of

39、 the calibration mixture.The equation for the temperature versus retention time calibra-tion curve is automatically generated by the software.9.1.3 Insure a rigorous syringe cleaning step betweensamples where multiple volumes of the next sample are flushedthrough the syringe and deposited to waste p

40、rior to actualinjection. If an autosampler or injector is used, the syringeflushing feature has to be programmed so that syringe carry-over is minimized. If injections are made manually, insure thatthe syringe needle is thoroughly wiped clean before injection.9.1.4 A typical calibration curve using

41、a 30-m column isshown in Fig. 3.9.1.5 For best precision, make sure that the calibration curveis essentially a linear plot of boiling point versus retentiontime. It is essential that at least one point on the calibrationcurve be at a lower boiling point than the IBP of the sample.Extrapolation of th

42、e curve at the upper end is more accurate,but for best accuracy, make sure that calibration points bracketthe boiling range of the sample at both the low and high ends.9.1.6 The calibration must be checked at least once a day.9.2 Sample AnalysisUsing identical instrument param-eters and conditions u

43、sed in the calibration run, inject thesample into the gas chromatograph. Record the data in such amanner that the retention times and areas of chromatographicpeaks are obtained.9.2.1 The same software used to process the calibration runmust be used to process the sample gas chromatographic data.The

44、software must be able to process the data and report IBP,and FBP, as well as boiling point data for any percentrecovered (at 1 % interval) between the initial and the finalboiling point.9.2.2 Care must be taken that the sample size chosen doesnot allow some peaks to exceed the linear range of the de

45、tector.Choose the detector range and the sample size such that allpeaks are fully integrated.9.2.3 Baseline stability is generally not a problem for thesetypes of samples. If problems with baseline is encountered,constant attention must be given to all factors that influencebaseline stability such a

46、s column bleed, septum bleed, detectortemperature control, carrier gas flow, leaks, etc. Baselinecorrection is generally not required for these types of samples.3Beckman CALS Simulated Distillation software was used in developing thistest method. There are other Simulated Distillation softwares avai

47、lable in themarket. Such softwares are marketed by Hewlett Packard, Perkin Elmer-Nelson,Analytical Controls, VG, Separation Systems, and others.FIG. 1 Column ResolutionFIG. 2 Peak SkewnessD 5399 04 (2009)39.2.4 Make periodic blank runs in the normal mannerwithout injection of sample to insure that t

48、he system is freefrom contamination. If the blank run shows sample carryovercontamination, steps must be taken to eliminate the source ofcontamination.10. Calculation10.1 The gas chromatographic data is processed by a dataprocessor or computer using commercially available “Simu-lated Distillation” s

49、oftware.10.2 The total area of all the peaks in the chromatogram iscalculated.10.3 The retention time at which the cumulative area countis equal to 0.5 % of the total area is translated to a boiling pointvalue from the calibration equation obtained in the calibrationprocedure (see 9.1) and is reported as the initial boiling point(IBP) of the sample.10.4 The retention time at which the cumulative area countis equal to 99.5 % of the total area is translated to a boilingpoint value from the calibration equation obtained in thecalibration pr

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1