ImageVerifierCode 换一换
格式:PDF , 页数:5 ,大小:79.57KB ,
资源ID:519709      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-519709.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM D5411-2005 Standard Practice for Calculation of Average Energy Per Disintegration (E) for a Mixture of Radionuclides in Reactor Coolant《反应堆冷却剂中放射性核素混合物每次蜕变的平均能量(E)计算的标准规范》.pdf)为本站会员(吴艺期)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM D5411-2005 Standard Practice for Calculation of Average Energy Per Disintegration (E) for a Mixture of Radionuclides in Reactor Coolant《反应堆冷却剂中放射性核素混合物每次蜕变的平均能量(E)计算的标准规范》.pdf

1、Designation: D 5411 05Standard Practice forCalculation of Average Energy Per Disintegration (E) for aMixture of Radionuclides in Reactor Coolant1This standard is issued under the fixed designation D 5411; the number immediately following the designation indicates the year oforiginal adoption or, in

2、the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon (e) indicates an editorial change since the last revision or reapproval.1. Scope1.1 This practice applies to the calculation of the averageenergy per disintegration (E

3、) for a mixture of radionuclides inreactor coolant water.1.2 The values stated in inch-pound units are to be regardedas standard. The values given in parentheses are mathematicalconversions to SI units, which are provided for informationonly and are not considered standard.1.3 This standard does not

4、 purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards

5、:2D 1066 Practice for Sampling SteamD 1129 Terminology Relating to WaterD 3370 Practices for Sampling Water from Closed ConduitsD 3648 Practices for the Measurement of Radioactivity2.2 Code of Federal Regulations:10CFR100 Reactor Cite Criteria33. Terminology3.1 DefinitionsFor definitions of terms us

6、ed in this prac-tice, refer to Terminology D 1129.4. Summary of Practice4.1 The average energy per disintegration, E(pronounced Ebar), for a mixture of radionuclides is calculated from theknown composition of the mixture. Eis computed by calcu-lating the total beta/gamma energy release rate, in MeV,

7、 anddividing it by the total disintegration rate. The resultant Ehasunits of MeV per disintegration.5. Significance and Use5.1 This practice is useful for the determination of theaverage energy per disintegration of the isotopic mixture foundin the coolant of a nuclear reactor (1).4The resultant val

8、ue isperiodically reported upon, by the operators of nuclear powerplants, in order to ensure that the 2-h radiation dose, measuredat the plant boundary, will not exceed an appropriately smallfraction of the Code of Federal Regulations, Title 10, part 100dose guidelines.5.2 In calculating E, all the

9、energy dissipated by chargedparticles and photons in each nuclear radioactive transforma-tion is included. This accounting includes the energy releasedin the form of beta particles and gamma rays as well as energyreleased from extra-nuclear transitions in the form of X-rays,Auger electrons, and conv

10、ersion electrons. However, not allradionuclides present in a sample are included in the calcula-tion of E.5.3 Individual, nuclear reactor, technical specifications varyand each nuclear operator must be aware of limitationsaffecting their operation. Typically, radio-iodines, radionu-clides with half

11、lives of less than 10 min (except those inequilibrium with the parent), and those radionuclides, identi-fied using gamma spectrometry, with less than a 95 % confi-dence level, are not typically included in the calculation.However, the operator must account for at least 95 % of theremaining activity.

12、 There are individual bases for each exclu-sion.5.3.1 Radio-iodines are typically excluded from the calcu-lation of Ebecause many commercial nuclear reactors arerequired to operate under a more conservative restriction of 1microCurie (37 kBq) per gram dose equivalent I-131 in thereactor coolant.5.3.

13、2 Excluding radionuclides with half-lives less than 10min, except those in equilibrium with the parent, has severalbases.5.3.2.1 The first basis considers the nuclear characteristicsof a typical reactor coolant. The radionuclides in a typical1This practice is under the jurisdiction of ASTM Committee

14、 D19 on Water andis the direct responsibility of Subcommittee D19.04 on Methods of RadiochemicalAnalysis.Current edition approved Dec. 1, 2005. Published December 2005. Originallyapproved in 1993. Last previous edition approved in 2005 as D 5411 93 (2005)e1.2For referenced ASTM standards, visit the

15、ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3Available from Standardization Documents Order Desk, Bldg. 4 Section D, 700Robbins Ave., Philadelphia,

16、 PA 19111-5094, Attn: NPODS.4The boldface numbers in parentheses refer to a list of references at the end ofthis practice.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.reactor coolant have half-lives of less than 4 min or havehalf-

17、lives greater than 14 min. This natural separation providesa distinct window for choosing a 10 min half-life cutoff.5.3.2.2 The second consideration is the predictable timedelay, approximately 30 min, which occurs between the releaseof the radioactivity from the reactor coolant to its release to the

18、environment and transport to the site boundary. In this time, theshort-lived radionuclides have undergone the decay associatedwith several half-lives and are no longer considered a signifi-cant contributor to E.5.3.2.3 A final practical basis is the difficulty associatedwith identifying short-lived

19、radionuclides in a sample thatrequires some significant time, relative to 10 min, to collect,transport, and analyze.5.3.3 Radionuclides identified using less than a 95 % con-fidence level are not typically included in the calculation toimprove the accuracy of the calculation (2).6. Interferences6.1

20、There are no true interferences to this practice. How-ever, errors may result in the calculation of Efrom incorrectlyanalyzing the sample mixture.7. Sampling7.1 If samples are collected for analysis in support of thispractice they should be representative of the matrix, be ofsufficient volume to ens

21、ure adequate analysis, and be collectedin accordance with Practices D 1066, D 3370, and D 3648.7.2 In addition to the requirements of 7.1, if samples ofreactor coolant are required in support of this practice, theyshould typically be collected only after a minimum of 2effective full-power days and 2

22、0 days of power operation haveelapsed since the reactor was subcritical for 48 h or longer.Individual nuclear operator technical specifications vary andshould be reviewed to determine specific requirements.8. Calibration and Standardization8.1 Any calibrations and standardizations required in sup-po

23、rt of this practice should be in accordance with the appli-cable sections of Practice D 3648.9. Procedure9.1 Conduct all analyses in support of this practice inaccordance with the applicable sections of Practice D 3648.9.2 Perform sufficient gamma isotopic analyses of the liq-uid, gaseous, and suspe

24、nded fractions of the sample to ensurethat at least 95 % of the coolant activity due to gamma emittingisotopes has been quantified. Samples should be analyzed atapproximately 2 h, 24 h, and 7 days following samplecollection. Multiple sample analyses are required to ensureaccurate quantification of t

25、he longer-lived isotopes because ofmasking caused by the high initial activity of the sample. Ifinterferences continue to be a concern with the results of theanalysis conducted on Day 7, it may be necessary to conductadditional gamma isotopic analyses of the sample at approxi-mately 30 days after co

26、llection.9.3 Perform sufficient isotopic analyses of the liquid, gas-eous, and suspended fractions of the sample to ensure that atleast 95 % of the coolant activity due to nongamma emittingisotopes has been quantified.9.4 Tabulate the concentrations, uniformly measured inCi/cc (37kBq/cc) or Ci/g (37

27、kBq/g), of all applicable gammaand nongamma emitting radioisotopes identified in the sample.Some examples of the radioisotopes or types of radioisotopesfound in a typical sample are the radioactive noble gases, purebeta emiter such as tritium, carbon-14, strontium-89 and 90,and yttrium-90, beta/gamm

28、a emitters such as cobalt-60, elec-tron capture isotopes such as iron-55, and reactor coolantsuspended and particulate material (commonly referred to ascrud).10. Calculation10.1 Calculate the average energy per disintegration, E,inMeV according to the following equation:E5(i 5 1nAi* Ei!(i 5 1nAi(1)w

29、here:E= average energy per disintegration, MeV/disintegration,Ai= activity of the ith radionuclide uniformly measured,Ci/cc or Ci/g, andEi= isotopic energy emission for the ith radionuclide,MeV/disintegration.10.2 The values for Aiare simply the measured activitylevels, uniformly measured in Ci/cc (

30、37 kBq/cc) or Ci/g (37kBq/g), for each appropriate radionuclide identified in thesample (for example, Co-60, Sr-90, Xe-133, etc.).10.3 The values for Eiare constant for each radionuclideand depend upon the decay scheme for that radioisotope. Eiiscalculated from the following equation:Ei5 Eibeta!1EiC

31、E! 1 EiA! 1 Eigamma!1EiX! (2)where:Ei(beta) = the average, abundance weighted, beta en-ergy per disintegration, MeV/disintegration,Ei(CE) = the average, abundance weighted, conversionelectron energy per disintegration, MeV/disintegration,Ei(A) = the average, abundance weighted, Augerelectron energy

32、per disintegration, MeV/disintegration,Ei(gamma) = the average, abundance weighted, gammaenergy per disintegration, MeV/disintegration, andEi(X) = the average, abundance weighted, X-ray en-ergy per disintegration, MeV/disintegration.10.4 An example for the calculation of Eifor the disinte-gration of

33、 xenon-133 (EXe-133) follows.10.4.1 The decay scheme for Xe-133 (3) is given in Fig. 1.10.4.2 First, calculate EXe-133(beta).10.4.2.1 To determine each Ei(beta), multiply the averageenergy per disintegration for each beta emitted by its abun-dance and sum the products. The average beta energies for

34、eachisotope may be found in the literature (4-6). Or, it may beD5411052approximated by multiplying the maximum beta particle en-ergy per transformation by a factor of one-third. Only one-thirdof the maximum beta energy is included in the calculationbecause the remaining two-thirds of the energy is d

35、issipated byneutrino emission (7). Neutrinos are very unreactive andrelinquish their energy very slowly. Therefore, their contribu-tion is ignored when considering the total energy available forabsorption at the site boundary.10.4.2.2 The average energies and abundances of the majorbeta emissions fo

36、r the decay of Xe-133 are (6):beta # Average Energy Abundance2 0.0751 MeV 0.69 %3 0.101 MeV 99.3 %10.4.2.3 Therefore, EXe-133(beta) is:EXe-133(beta) = (beta #2 average energy) * (beta 2 abundance)+ (beta #3 average energy) * (beta 3 abundance)EXe-133(beta) = 0.0751 * 0.0069 + 0.101 * 0.993,EXe-133(b

37、eta) = 0.101 MeV/disintegration.10.4.3 Next, calculate Ei(CE).10.4.3.1 Unlike beta particle emissions, conversion elec-trons are monoenergetic emissions and are not accompanied byneutrino emission. Therefore, their contributions to Ei(beta) isincluded at their full emission energy minus the binding

38、energyof the emitted electron. Here again the abundance for eachtransformation is an included factor.10.4.3.2 The energies and abundances of the major conver-sion electron emissions for the decay of Xe-133 are (6):CE # Energy AbundanceK-2 0.0450 MeV 53.3 %L-2 0.0753 MeV 8.14 %10.4.3.3 Therefore, EXe

39、-133(CE) is:EXe-133(CE) = (K-2 energy) * (K-2 abundance)+ (L-2 energy) * (L-2 abundance)EXe-133(CE) = 0.0450 * 0.533 + 0.0753 * 0.0814,EXe-133(CE) = 0.0301 MeV/disintegration.10.4.4 Next, calculate EXe-133(A).10.4.4.1 Similar to conversion electron emissions, Augerelectrons are monoenergetic emissio

40、ns and are not accompa-nied by neutrino emission. Therefore, their contribution to Eiisalso included at their full emission energy minus the bindingenergy of the emitted electron. Here again the abundance foreach transformation is an included factor.10.4.4.2 The energies and abundances of the major

41、Augerelectron emissions for the decay of Xe-133 are (6):Auger Electron Energy AbundanceL 0.00355 MeV 49.7 %K 0.0255 MeV 5.6 %10.4.4.3 Therefore, EXe-133(A) is:EXe-133(A) = (L energy) * (L abundance)+ (K energy) * (K abundance)EXe-133(A) = 0.00355 * 0.497 + 0.0255 * 0.056,EXe-133(A) = 0.00319 MeV/dis

42、integration.10.4.5 Next, calculate EXe-133(gamma). The energies andabundances of the major gamma emissions for the decay ofXe-133 are (6):gamma # Energy Abundance5 0.0796 MeV 0.217 %6 0.0810 MeV 37.6 %10.4.5.1 Therefore, EXe-133(gamma) is:EXe-133(gamma) = (gamma #5 energy) * (gamma #5 abundance)+ (g

43、amma #6 energy) * (gamma #6 abundance)EXe-133(gamma) = 0.0796 * 0.00217 + 0.081 * 0.376,EXe-133(gamma) = 0.0306 MeV/disintegration.10.4.6 Next, calculate EXe-133(X). The energies and abun-dances of the major X-rays emissions for the decay of Xe-133are (6):X-ray # Energy AbundanceKalpha20.0306 MeV 13

44、.3 %Kalpha10.0310 MeV 24.6 %10.4.6.1 Therefore, EXe-133(X) is:EXe-133(X) = (Kalpha2energy) * (Kalpha2abundance)+(Kalpha1energy) * (Kalpha1abundance)EXe-133(X) = 0.0306 * 0.133 + 0.0310 * 0.246,EXe-133(X) = 0.0116 MeV/disintegration.10.4.7 The final step in the calculation of EXe-133is:EXe-133=EXe-13

45、3(beta) + EXe-133(CE)+EXe-133(A) + EXe-133(gamma) +EXe-133(X)EXe-133= 0.106 MeV/dis + 0.0301 MeV/dis + 0.00319 MeV/dis + 0.0306MeV/dis + 0.0116 MeV/disEXe-133= 0.181 MeV/disintegration.10.5 To calculate the value of Efor the entire sample then,an Eivalue for each radionuclide is calculated. The prod

46、uct Eiand Aiare determined for each isotope and summed. This sumis then divided by the total activity of the sample to give E.10.6 The decay energies for several nuclides, typicallyfound in reactor coolants, are given in Appendix X1 (4). Thetable is condensed to show the measured, total average ener

47、gyfor all emitted electrons (the sum of the abundance weightedaverage energy for the beta, conversion electron, and Augerelectron energies = Ei(beta) + Ei(CE) + Ei(A) and the totalaverage photon energy (the sum of the abundance weightedgamma and X-ray energies = Ei(gamma) + Ei(X), rather thaneach in

48、dividual contributor. It is important to note that the tableuses the measured, average beta energy per disintegrationrather than the approximated13 maximum beta energy. Valuescalculated by nuclear operators may differ from those ofAppendix X1 due to rounding and variations found in theliterature for

49、 the energies of each emanation.11. Keywords11.1 average energy per disintegration; disintegration; Ebar; MeV per disintegration; nuclear reactor; radioactivity;reactor coolant; technical specificationsFIG. 1 Decay Scheme for Xe-133D5411053APPENDIX(Nonmandatory Information)X1. See Table X1.1 below.TABLE X1.1 Average Fission Product Decay Energies for Different Radiation Types (4)IsotopeAverage Total Electron Energy Emitted Average Total Photon Energy EmittedHalf-LifeMev/decay Mev/decayBr-84 1.2492 1.7874 31.8 minKr-85 0.2505 0.0022 10.72 yearsKr-85m 0.2

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1