1、Designation: D 5501 04An American National StandardStandard Test Method forDetermination of Ethanol Content of Denatured Fuel Ethanolby Gas Chromatography1This standard is issued under the fixed designation D 5501; the number immediately following the designation indicates the year oforiginal adopti
2、on or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon (e) indicates an editorial change since the last revision or reapproval.1. Scope*1.1 This test method covers the determination of the ethanolcontent of denat
3、ured fuel ethanol by gas chromatography.1.2 Ethanol is determined from 93 to 97 mass % andmethanol is determined from 0.1 to 0.6 mass %. Equationsused to convert these individual alcohols from mass % tovolume % are provided.1.3 This test method does identify and quantify methanolbut does not purport
4、 to identify all individual components thatmake up the denaturant.1.4 Water cannot be determined by this test method andshall be measured by a procedure such as Test Method D 1364and the result used to correct the chromatographic values.1.5 This test method is inappropriate for impurities that boila
5、t temperatures higher than 225C or for impurities that causepoor or no response in a flame ionization detector, such aswater.1.6 The values stated in SI units are to be regarded as thestandard. The values given in parentheses are provided forinformation purposes only.1.7 This standard does not purpo
6、rt to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2D 12
7、98 Test Method for Density, Relative Density (SpecificGravity), or API Gravity of Crude Petroleum and LiquidPetroleum Products by Hydrometer MethodD 1364 Test Method for Water in Volatile Solvents (FischerReagent Titration Method)D 4052 Test Method for Density and Relative Density ofLiquids by Digit
8、al Density MeterD 4057 Practice for Manual Sampling of Petroleum andPetroleum ProductsD 4307 Practice for Preparation of Liquid Blends for Use asAnalytical StandardsD 4626 Practice for Calculation of Gas ChromatographicResponse FactorsD 4806 Specification for Denatured Fuel Ethanol for Blend-ing wit
9、h Gasolines for Use as Automotive Spark-IgnitionEngine FuelE 355 Practice for Gas Chromatography Terms and Rela-tionshipsE 594 Practice for Testing Flame Ionization Detectors Usedin Gas ChromatographyE 1064 Test Method for Water in Organic Liquids byCoulometric Karl Fischer Titration3. Terminology3.
10、1 DefinitionsThis test method makes reference to manycommon gas chromatographic procedures, terms, and relation-ships. Detailed definitions can be found in Practices E 355 andE 594.4. Summary of Test Method4.1 A representative aliquot of the fuel ethanol sample isintroduced into a gas chromatograph
11、equipped with a polydi-methylsiloxane bonded phase capillary column. Helium carriergas transports the vaporized aliquot through the column wherethe components are separated by the chromatographic process.Components are sensed by a flame ionization detector as theyelute from the column. The detector
12、signal is processed by anelectronic data acquisition system. The ethanol and methanolcomponents are identified by comparing their retention times tothe ones identified by analyzing standards under identicalconditions. The concentrations of all components are deter-mined in mass percent area by norma
13、lization of the peak areas.5. Significance and Use5.1 Fuel ethanol is required to be denatured with gasoline inaccordance with Specification D 4806. State and federal lawsspecify the concentration of ethanol in gasoline blends. Thedetermination of the amount of denaturant is important to1This test m
14、ethod is under the jurisdiction of ASTM Committee D02 onPetroleum Products and Lubricants and is the direct responsibility of SubcommitteeD02.04 on Hydrocarbon Analysis.Current edition approved April 1, 2004. Published April 2004. Originallyapproved in 1994. Last previous edition approved in 1998 as
15、 D 550194(1998)e1.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.1*A Summary of Changes section appears at t
16、he end of this standard.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.ensure the blended fuel complies with federal and state laws.This test method provides a method of determining thepercentage of ethanol (purity) of the fuel ethan
17、ol that isblended into gasoline.6. Apparatus6.1 Gas Chromatograph, capable of operating at the condi-tions listed in Table 1. A heated flash vaporizing injectordesigned to provide a linear sample split injection (for ex-ample, 200:1) is required for proper sample introduction.Carrier gas controls sh
18、all be of adequate precision to providereproducible column flows and split ratios in order to maintainanalytical integrity. Pressure control devices and gauges shallbe designed to attain the linear velocity required in the columnused. A hydrogen flame ionization detector with associated gascontrols
19、and electronics, designed for optimum response withopen tubular columns, is required.6.2 Sample IntroductionManual or automatic liquid sy-ringe sample injection to the splitting injector is employed.Devices capable of 0.1 to 0.5 L injections are suitable. Itshould be noted that inadequate splitter d
20、esign, poor injectiontechnique, and overloading the column can result in poorresolution. Avoid overloading, particularly of the ethanol peak,and eliminate this condition during analysis.6.3 ColumnThis test method utilizes a fused silica opentubular column with non-polar polydimethylsiloxane bonded(c
21、ross-linked) phase internal coating. Any column with equiva-lent or better chromatographic efficiency and selectivity tothose described in 6.3.1 can be used.6.3.1 Open tubular column with a non-polar polydimethyl-siloxane bonded (cross-linked) phase internal coating, either150 m by 0.25 mm with a 1.
22、0 m film thickness, or 100 m by0.25 mm with a 0.5 film thickness is required.6.4 Electronic Data Acquisition SystemAny data acquisi-tion and integration device used for quantification of theseanalyses must meet or exceed these minimum requirements:6.4.1 Capacity for at least 80 peaks/analysis,6.4.2
23、Normalized percent calculation based on peak areaand using response factors,6.4.3 Identification of individual components based on re-tention time,6.4.4 Noise and spike rejection capability,6.4.5 Sampling rate for narrow (96 %ethanol, 0.1 % methanol and 3.9 % n-heptane. Calculate themass relative re
24、sponse factor according to Practice D 4626.11. Gas Chromatographic Analysis Procedure11.1 Set the instrument operating variables to the valuesspecified in Table 1.11.2 Set instrumental sensitivity such that any component ofat least 0.002 mass % can be detected and integrated.11.3 Inject 0.1 to 0.5 L
25、 of sample into the injection portand start the analysis. Obtain a chromatogram and peakintegration report. A sample chromatogram is shown in Fig. 1.11.4 The ethanol peak will require tangential skimming tobe correctly integrated if components of the denaturant elute onthe ethanol peaks tail.12. Cal
26、culation12.1 Multiply the area of each identified peak by theappropriate mass relative response factor. Use those factorsdetermined for individual compounds and use a factor of 1.000for unknowns.12.2 Determine the relative mass percent of the individualalcohols by using the following equation:RMi5AR
27、i3 100ARt(2)where:RMi= relative mass % of the individual alcohols,ARi= area of the individual alcohol peak corrected by theappropriate mass relative response factor (see 12.1),andARt= total area of all detected peaks corrected by theirappropriate mass relative response factors (12.1 ).12.3 Obtain th
28、e mass % of water in the sample. TestMethods D 1364, E 1064, or equivalent, can be used.12.4 Determine the mass % of the alcohols of interest byusing the following equation:TABLE 2 Pertinent Component DataTypical Mass RelativeResponse FactorsARelative Density at15.56C (60F)Methanol 3.20 0.796Ethanol
29、 2.06 0.794AWhere n-heptane = 1.D5501043Mi5RMi3 100 2 mass % water in sample!100(3)where:Mi= mass % of the individual alcohol being determined,andRMi= relative mass % of the individual alcohol from Eq2.12.5 For the volumetric concentration of the alcohol, calcu-late as follows:Vi5Mi3 DsDi(4)where:Vi
30、= volume % of component i,Mi= mass % of component i from Eq 3,Di= relative density at 15.56C (60F) of component i asfound in Table 2, andDs= sample under study as determined by Test MethodD 1298 or D 4052.13. Report13.1 Report the purity of the individual alcohols to thenearest 0.01 mass % using Eq
31、3 or nearest 0.01 volume %using Eq 4.14. Precision and Bias14.1 PrecisionThe precision of this test method as deter-mined by the statistical examination of the interlaboratory gaschromatographic test results is as follows:14.1.1 RepeatabilityThe difference between successiveresults obtained by the s
32、ame operator with the same apparatusunder constant operating conditions on identical test materialswould, in the long run, in the normal and correct operation ofthe test method exceed the following values only in one case intwenty.RepeatabilityAComponent Range,Mass %Repeatability,Mass %Ethanol 9397
33、0.21Methanol 0.010.6 0.01859 =XAWhere X is the mass percent.14.1.2 ReproducibilityThe difference between two singleand independent results obtained by different laboratories onidentical test material would, in the long run, exceed thefollowing values only in one case in twenty:ReproducibilityACompon
34、ent Range,Mass %Reproducibility,Mass %Ethanol 9397 0.53Methanol 0.010.6 0.1172 =XAWhere X is the mass percent.NOTE 2The data below shows repeatabilities and reproducibilities forethanol and several methanol values obtained using the formulas given in14.1.1 and 14.1.2.Calculated Precision Values for
35、Ethanol and MethanolRepeatability Reproducibilityamount r amount REtOH for all resultswithin scope(93 to 97 %)0.21 EtOH for all resultswithin scope(93 to 97 %)0.53MeOH 0.01 0.00186 MeOH 0.01 0.011720.05 0.00416 0.05 0.026210.10 0.00588 0.10 0.037060.25 0.00930 0.25 0.058600.50 0.01315 0.50 0.082870.
36、60 0.01440 0.60 0.0907814.1.3 BiasNo significant difference was found betweenthe ethanol or methanol content obtained by this test methodand the expected ethanol or methanol content (based on theconcentrations of ethanol and methanol in the preparedsamples) for the fuel ethanol samples analyzed in t
37、he roundrobin used to evaluate the precision of this test method.415. Keywords15.1 denatured; ethanol; fuel grade gas chromatography4Supporting data have been filed at ASTM International Headquarters and maybe obtained by requesting Research Reports RR: D02-1266 and D02-1328.FIG. 1 Sample Chromatogr
38、amD5501044SUMMARY OF CHANGESSubcommittee D02.04 has identified the location of selected changes to this standard since the last issue(D 550194(1998)e1) that may impact the use of this standard.(1) Changed “methyl silicone” to “polydimethylsiloxane” in4.1, 6.3, and 6.3.1.(2) Reworded 6.4.2 and 6.4.5
39、for clarity.(3) Added reference to Practice E 594 to 9.4.1 and 9.4.3.(4) Corrected equations for both repeatability and reproduc-ibility in Section 14.(5) Removed erroneous reference to Table 1 from 14.1.1.(6) Changed “repeatability” to “reproducibility” in 14.1.2.ASTM International takes no positio
40、n respecting the validity of any patent rights asserted in connection with any item mentionedin this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the riskof infringement of such rights, are entirely their own responsibility.
41、This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years andif not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standardsand should be addressed to ASTM I
42、nternational Headquarters. Your comments will receive careful consideration at a meeting of theresponsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you shouldmake your views known to the ASTM Committee on Standards, at the address sho
43、wn below.This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959,United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the aboveaddress or at 610-832-9585 (phone), 610-832-9555 (fax), or serviceastm.org (e-mail); or through the ASTM website(www.astm.org).D5501045
copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1