ImageVerifierCode 换一换
格式:PDF , 页数:5 ,大小:39.21KB ,
资源ID:520696      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-520696.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM D5787-1995(2000) Standard Practice for Monitoring Well Protection《井保护监控的标准实施规程》.pdf)为本站会员(orderah291)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM D5787-1995(2000) Standard Practice for Monitoring Well Protection《井保护监控的标准实施规程》.pdf

1、Designation: D 5787 95 (Reapproved 2000)Standard Practice forMonitoring Well Protection1This standard is issued under the fixed designation D 5787; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A number

2、 in parentheses indicates the year of last reapproval. Asuperscript epsilon (e) indicates an editorial change since the last revision or reapproval.INTRODUCTIONThis practice for monitoring well protection is provided to promote durable and reliable protectionof installed monitoring wells against nat

3、ural and man caused damage. The practices contained promotethe development and planning of monitoring well protection during the design and installation stage.1. Scope1.1 This practice identifies design and construction consid-erations to be applied to monitoring wells for protection fromnatural and

4、 man caused damage or impacts.1.2 The installation and development of a well is a costlyand detailed activity with the goal of providing representativesamples and data throughout the design life of the well.Damages to the well at the surface frequently result in loss ofthe well or changes in the dat

5、a. This standard provides foraccess control so that tampering with the installation should beevident. The design and installation of appropriate surfaceprotection will mitigate the likelihood of damage or loss.1.3 This practice may be applied to other surface or subsur-face monitoring device locatio

6、ns, such as piezometers, per-meameters, temperature or moisture monitors, or seismicdevices to provide protection.1.4 This practice offers a set of instructions for performingone or more specific operations. This document cannot replaceeducation or experience and should be used in conjunctionwith pr

7、ofessional judgment. Not all aspects of this practice maybe applicable in all circumstances. This ASTM standard is notintended to represent or replace the standard of care by whichthe adequacy of a given professional service must be judged,nor should this document be applied without consideration of

8、a projects many unique aspects. The word “Standard” in thetitle of this document means only that the document has beenapproved through the ASTM consensus process.2. Referenced Documents2.1 ASTM Standards:C 150 Specification for Portland Cement2C 294 Descriptive Nomenclature of Constituents of Natura

9、lMineral Aggregates3D 5092 Design and Installation of Ground Water Monitor-ing Wells in Aquifers43. Terminology3.1 Definitions:3.1.1 barrierany device that physically prevents access ordamage to an area.3.1.2 barrier markersplastic, or metal posts, often inbright colors, placed around a monitoring w

10、ell to aid inidentifying or locating the well.3.1.3 barrier postssteel pipe, typically from 4 to 12inches in diameter and normally filled with concrete or groutthat are placed around a well location to protect the well fromphysical damage, such as from vehicles.3.1.4 boreholea circular open or uncas

11、ed subsurface holecreated by drilling.3.1.5 casingpipe, finished in sections with either threadedconnections or bevelled edges to be field welded, which isinstalled temporarily or permanently to counteract caving, toadvance the borehole, or to isolate the zone being monitored, ora combination thereo

12、f.3.1.6 casing, protectivea section of larger diameter pipethat is emplaced over the upper end of a smaller diametermonitoring well riser or casing to provide structural protectionto the well and restrict unauthorized access into the well.3.1.7 riserthe pipe extending from the well screen to orabove

13、 the ground surface.3.1.8 sealed capa sealable riser cap, normally gasketed orsealed, that is designed to prevent water or other substancesfrom entering into, or out of the well riser.3.1.9 vented capa cap with a small hole that is installed ontop of the riser.4. Significance and Use4.1 An adequatel

14、y designed and installed surface protection1This practice is under the jurisdiction of ASTM Committee D18 on Soil andRock and is the direct responsibility of Subcommittee D18.21 on Ground Water andVadose Zone Investigations.Current edition approved Sept. 10, 1995. Published January 1996.2Annual Book

15、 of ASTM Standards, Vol 04.01.3Annual Book of ASTM Standards, Vol 04.02.4Annual Book of ASTM Standards, Vol 04.08.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.system will mitigate the consequences of naturally or mancaused damages

16、 which could otherwise occur and result ineither changes to the data, or complete loss of the monitoringwell.4.2 The extent of application of this practice may dependupon the importance of the monitoring data, cost of monitoringwell replacement, expected or design life of the monitoringwell, the pre

17、sence or absence of potential risks, and setting orlocation of the well.4.3 Monitoring well surface protection should be a part ofthe well design process, and installation of the protectivesystem should be completed at the time of monitoring wellinstallation and development.4.4 Information determine

18、d at the time of installation of theprotective system will form a baseline for future monitoringwell inspection and maintenance. Additionally, elements of theprotection system will satisfy some regulatory requirementssuch as for protection of near surface ground water and wellidentification.5. Desig

19、n Considerations5.1 The design of a monitoring well protective system islike other design processes, where the input considerations aredetermined and the design output seeks to remedy or mitigatethe negative possibilities, while taking advantage of the sitecharacteristics.5.2 The factors identified

20、in this practice should be consid-ered during the design of the monitoring well protectivesystem. The final design should be included in the monitoringwell design and installation documentation and be completedand verified during the final completion and development ofthe well.5.3 In determining the

21、 level or degree of protection re-quired, the costs and consequences, such as loss of data orreplacement of the well, must be weighed against the probabil-ity of occurrence and the desired life of the well. Formonitoring wells which will be used to obtain data over a shorttime period, the protection

22、 system may be minimal. For wellswhich are expected to be used for an indefinite period, are in avulnerable location, and for which the costs of lost data couldbe high, the protective system should be extensive. Factors toconsider and methods of mitigating them are presented in thefollowing sections

23、.5.3.1 Impact DamagesPhysical damages resulting fromconstruction equipment, livestock, or vehicles striking themonitoring well casing frequently occur. Protective devicesand approaches include:5.3.1.1 Extra heavy protective casings with a reinforcedconcrete apron extending several feet around the ca

24、sing may bean acceptable design in those areas where frost heave is not aproblem. The principle behind this is to design the protectivecasing so that it will be able to withstand the impact of vehicleswithout damage to the riser within.5.3.1.2 Barrier Posts placed in an array such that anyanticipate

25、d vehicle can not pass between them to strike theprotective casing. Barrier posts are typically filled with con-crete and set in post holes several feet deep which arebackfilled with concrete. Barrier posts typically extend from 3to 5 feet above the ground surface. Barrier posts are frequentlyused i

26、n and around industrial or high vehicle traffic areas. Costsfor installation can be substantial however they provide a highdegree of protection for exposed wells. Cost of removal atdecommissioning can also be substantial.NOTE 1Cattle frequently rub against above ground completionsleading to damage o

27、f unprotected casings. Concrete filled posts or drivenT-posts, wrapped with barbed wire, are frequently used.5.3.1.3 Barrier Markers are relatively lightweight metal oroften plastic posts which provide minimal impact resistancebut which by their color, location, and height, warn individualsof the we

28、ll presence. The use of barrier markers is effective inareas that are well protected from impact type damage by otherfeatures, such as surrounding structures or fences. They arerelatively inexpensive to install.5.3.1.4 SignsAn inexpensive means of identifying thepresence of a monitoring well. Signs

29、provide protection onlyby warning of the well presence. Signs may be required insome circumstances and appropriate in others. Wells known tocontain hazardous, radioactive, or explosive compounds shouldbe marked to warn sampling personnel of potential dangers.When a potential exists for water usage,

30、signage indicating thatthe water is non-potable and is utilized strictly as a monitoringwell, and not for any other purpose, may be appropriate.Disadvantages of signs are that they may be ignored, are oftendifficult to maintain, and may invite vandalism to the well.5.3.1.5 Recessed or Subsurface cas

31、ings may be used tomitigate impact damage by allowing the vehicles to pass over.FIG. 1 Example of Protective DesignD 5787 95 (2000)2Frequently used techniques include recessing the casing belowground level, using commercially available covers. These maytake the form of valve pits or manholes, as exa

32、mples. Advan-tages include both protecting the well while minimizing theinterference to surface traffic, such as in parking lots or urbanareas and screening the well from view. Using this technique,wells may be located in the most desired locations from aground-water monitoring perspective. Disadvan

33、tages includethe need to assure surface drainage does not enter the well riser,either by maintaining positive drainage or by using a sealedriser cap (or both). When the risk is from the influx of surfacewater, drains below the level of the riser should be installed. Inextreme cases, such as in locat

34、ion with high ground-waterlevels or potential drainage from surrounding areas, automaticsump pumps may be required. Consideration should be givento the sampling personnel who will require adequate space toperform sampling, particularly in manhole situations. Addi-tionally, personnel protection requi

35、rements from working in aconfined space should be considered.5.3.1.6 Fencing, such as commercial chainlink type fencesmay provide adequate protection in areas with light risk fromvehicles, but where people or animals may interfere or affectthe well. Advantages are relative minimal costs, ease ofremo

36、val or opening. Disadvantages include maintenance, ad-equacy of protection from hard vehicle impacts, and visual andtraffic interference.5.3.2 VandalismDamage from vandals can take twoforms, those which seek to damage or destroy the well itself,and those which intend to damage the data that the well

37、 mayprovide. Theft of sampling pumps, loss of access to the riser,plugging of the well with foreign debris, or injection of foreignmaterials or chemicals are potential results of vandalism.5.3.2.1 Physical damage to the well can be minimized withmany of the same techniques as used to protect the wel

38、l fromimpact damages. Generally two techniques can be used toprotect a well from physical damage, one, by hiding orcamouflaging the well, the other by constructing the surfaceprotection of the well with multiple physical barriers. Hiding orcamouflaging the well utilizes the philosophy that what cant

39、be found cant be damaged. Camouflage techniques includeenclosing the well in manholes or sumps, planting shrubs orvegetation to shield the well from view, enclosing the well inanother structure, such as inside a raised planter or a smallshed. Color characteristics of the above ground can be used tod

40、isguise the well or to assist in making it blend into thesurroundings. Costs for camouflage can vary widely, but aregenerally minimal when included with other protections. Dis-advantages are that if found, the well is still susceptible todamage by vandals, that damage may be undetected, and thatsamp

41、ling personnel not familiar with the well may havedifficulty locating it.5.3.2.2 Protection from vandalism is generally achieved byconstructing multiple physical barriers. The first barrier shouldalways include a rugged protective casing with a locking cap orlid. The lock quality can vary from relat

42、ively inexpensive andeasily broken types to more costly high security type locks.Locks used on wells are subject to weather, dirt and deterio-ration. Frequently locks must be cut if not regularly maintainedand the design and selection of the cap and lock should includethis consideration. Constructio

43、n of the hasps, locking lugs, orother mechanisms should be rugged, made of metal and weldedto prevent access to the casing by prying, hammering or othertypical vandalism. The casing should be heavy enough to resistpenetration by bullets in areas where shooting may occur. Aconcrete apron or grout col

44、lar around the casing will providemass to defeat attempts to pull the casing upwards, or side-ways. Additional physical barriers should be added in consid-eration of the location and likelihood of vandalism. Theseinclude locked chainlink fences, use of barbed or concertinawire, concrete walls, or en

45、closure inside of buildings or otherfenced or enclosed areas. When placed in below ground levelstructures, such as sumps or manholes, the access covers can beequipped with a lock. Access to keys should be controlled toprevent unauthorized use and entry.5.3.2.3 Protection of the well and the data, (f

46、or example,ground-water level elevations), that the well will provide canbe generally achieved by the physical barriers previouslydescribed. Detection of access to a well should also beconsidered. While not protecting the well and the sample datadirectly, it will be valuable in evaluating the data d

47、erived fromthe well samples. Sampling personnel should be alert andinspect the well and the protective devices for signs ofvandalism. Foil or paper seals can be applied to the riser andcap at the end of each sampling to allow visual verification thatthe riser cap has not been disturbed between sampl

48、ings. Sealsare inexpensive and provide assurance of the well integrity andshould be considered for use on all wells.5.3.3 LandslidesMovement of the surface layers of soildue to seismic activity or other changes can result in lateralmovement with the riser being bent or ultimately sheared. Theprimary

49、 protection against this type of damage is location.Whenever possible, the well should be located outside of theslide area. When relocation is not possible and the moving soillayer is relatively thin, limited protection may be achieved byextending the protective casing several feet below the shearline. Additional protection may be gained by driving piling orposts through the surface layer and below the shear line toanchor the surface. Protection and maintenance of wells inslide areas can be expensive and may result in only delayingthe loss of the well.5.3.4 Freeze Damage

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1