ImageVerifierCode 换一换
格式:PDF , 页数:18 ,大小:265.43KB ,
资源ID:520904      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-520904.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM D5865-2011a 1593 Standard Test Method for Gross Calorific Value of Coal and Coke《煤和焦炭总热值的标准试验方法》.pdf)为本站会员(ideacase155)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM D5865-2011a 1593 Standard Test Method for Gross Calorific Value of Coal and Coke《煤和焦炭总热值的标准试验方法》.pdf

1、Designation: D5865 11aStandard Test Method forGross Calorific Value of Coal and Coke1This standard is issued under the fixed designation D5865; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A number in

2、parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope*1.1 This test method pertains to the determination of thegross calorific value of coal and coke by either an isoperibol oradiabatic bomb calorimeter

3、.1.2 The values stated in SI units are to be regarded asstandard. No other units of measurement are included in thisstandard.1.3 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish app

4、ro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use. Specific hazardstatements are given in Section 8.2. Referenced Documents2.1 ASTM Standards:2D121 Terminology of Coal and CokeD346 Practice for Collection and Preparation of CokeSamples for

5、Laboratory AnalysisD388 Classification of Coals by RankD1193 Specification for Reagent WaterD2013 Practice for Preparing Coal Samples for AnalysisD3173 Test Method for Moisture in the Analysis Sample ofCoal and CokeD3177 Test Methods for Total Sulfur in the AnalysisSample of Coal and CokeD3180 Pract

6、ice for Calculating Coal and Coke Analysesfrom As-Determined to Different BasesD4239 Test Method for Sulfur in the Analysis Sample ofCoal and Coke Using High-Temperature Tube FurnaceCombustionD7582 Test Methods for Proximate Analysis of Coal andCoke by Macro Thermogravimetric AnalysisE144 Practice f

7、or Safe Use of Oxygen Combustion BombsE178 Practice for Dealing With Outlying ObservationsE882 Guide for Accountability and Quality Control in theChemical Analysis LaboratoryE2251 Specification for Liquid-in-Glass ASTM Thermom-eters with Low-Hazard Precision Liquids3. Terminology3.1 For additional d

8、efinitions of terms used in this testmethod, refer to Terminology D121.3.2 Definitions:3.2.1 adiabatic calorimetera calorimeter that operates inthe adiabatic mode and may or may not use a microprocessor.The initial temperature before initiating the combustion and thefinal temperatures are recorded b

9、y the operator or the micro-processor.3.2.2 automated calorimetera calorimeter which has amicroprocessor that takes the thermometric readings and cal-culates the Calibration Value and the Heat of CombustionValues.3.2.3 British thermal unit Btuis the amount of heatrequired to raise the temperature of

10、 one pound - mass lbm ofliquid water at one atmosphere pressure one degree Fahrenheitat a stated temperature. The results of combustion calorimetrictests of fuels for steam power plants may be expressed in termsof the 1956 International Steam Table calorie (I.T. cal) whichis defined by the relation,

11、 1 I.T. cal = 4.1868 J. The Btu usedin modern steam tables is defined by the means of the relation,1I.T.cal/g=1.8I.T.Btu/lb.Thus, 1 I.T. Btu / lb = 2.326 J/g.3.2.4 calorific valuethe heat produced by combustion of aunit quantity of a substance under specified conditions.1This test method is under th

12、e jurisdiction of ASTM Committee D05 on Coaland Coke and is the direct responsibility of Subcommittee D05.21 on Methods ofAnalysis.Current edition approved Nov. 1, 2011. Published December 2011. Originallyapproved in 1995. Last previous edition approved in 2011 as D5865 11. DOI:10.1520/D5865-11A.2Fo

13、r referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.1*A Summary of Changes section appears at the end of this standa

14、rd.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.3.2.5 calorimetera device for measuring calorific valueconsisting of a bomb, its contents, a vessel for holding thebomb, temperature measuring devices, ignition leads, water,stirrer,

15、and a jacket maintained at specified temperature con-ditions.3.2.6 gross calorific value (gross heat of combustion atconstant volume), Qv(gross)the heat produced by completecombustion of a substance at constant volume with all waterformed condensed to a liquid.3.2.7 heat of formationthe change in he

16、at content result-ing from the formation of 1 mole of a substance from itselements at constant pressure.3.2.8 isoperibol calorimetera calorimeter that operates inthe isoperibol mode and uses a microprocssor to record theinitial and final temperatures and make the appropiate heat leakcorrections duri

17、ng the temperature rise. It determines when thecalorimeter is in equilibrium and ignites the sample anddetermines when the calorimeter has reached equilibrium afterignition.3.2.9 net calorific value (net heat of combustion at constantpressure), Qp(net)the heat produced by combustion of asubstance at

18、 a constant pressure of 0.1 MPa (1 atm), with anywater formed remaining as vapor.3.3 Definitions of Terms Specific to This Standard:3.3.1 corrected temperature risethe calorimeter tempera-ture change caused by the process that occurs inside the bombcorrected for various effects.3.3.2 heat capacityth

19、e energy required to raise the tem-perature of the calorimeter one arbitrary unit.3.3.2.1 DiscussionThe heat capacity can also be referredto as the energy equivalent or water equivalent of the calorim-eter.4. Summary of Test Method4.1 The heat capacity of the calorimeter is determined byburning a sp

20、ecified mass of benzoic acid in oxygen. Acomparable amount of the analysis sample is burned under thesame conditions in the calorimeter. The calorific value of theanalysis sample is computed by multiplying the correctedtemperature rise, adjusted for extraneous heat effects, by theheat capacity and d

21、ividing by the mass of the sample.4.2 Oxidation of coal after sampling can result in a reduc-tion of calorific value. In particular, lignite and sub-bituminousrank coal samples may experience greater oxidation effectsthan samples of higher rank coals. Unnecessary exposure of thesamples to the air fo

22、r the time of sampling or delay in analysisshall be avoided. (See X2.1.)5. Significance and Use5.1 The gross calorific value can be used to compute thetotal calorific content of the quantity of coal or coke repre-sented by the sample for payment purposes.5.2 The gross calorific value can be used for

23、 computing thecalorific value versus sulfur content to determine whether thecoal meets regulatory requirements for industrial fuels.5.3 The gross calorific value can be used to evaluate theeffectiveness of beneficiation processes.5.4 The gross calorific value can be required to classifycoals accordi

24、ng to Classification D388.6. Apparatus and Facilities6.1 Test AreaAn area free from drafts, shielded fromdirect sunlight and other radiation sources. Thermostatic con-trol of room temperature and controlled relative humidity aredesirable.6.2 Combustion BombConstructed of materials that arenot affect

25、ed by the combustion process or the products formedto introduce measurable heat input or alteration of end prod-ucts. The bomb shall be designed so that all liquid combustionproducts can be completely recovered by washing the innersurfaces. There shall be no gas leakage. The bomb shall becapable of

26、withstanding a hydrostatic pressure test to 20 MPa(3000 psig) at room temperature without stressing any partbeyond its specified elastic limit.6.3 BalanceAlaboratory balance capable of weighing theanalysis sample to the nearest 0.0001 g. The balance shall bechecked weekly, at a minimum, for accuracy

27、.6.4 Calorimeter VesselMade of metal with a tarnish-resistant coating, with all outer surfaces highly polished. Itssize shall be such that the bomb is completely immersed inwater during a determination. A stirrer shall be provided foruniform mixing of the water. The immersed portion of thestirrer sh

28、all be accessible to the outside through a coupler oflow thermal conductivity. The stirrer speed shall remainconstant to minimize any temperature variations due to stirring.Continuous stirring for 10 min shall not raise the calorimetertemperature more than 0.01C when starting with identicaltemperatu

29、res in the calorimeter, test area and jacket. Forcalorimeters having a bucket it can be a separate component orintegral component of the bomb. The vessel shall be of suchconstruction that the environment of the calorimeters entireouter boundaries can be maintained at a uniform temperature.6.5 Jacket

30、A container with the inner perimeter main-tained at constant temperature 60.1C (isoperibol) or at thesame temperature 60.1C as the calorimeter vessel (adiabatic)during the test. To minimize convection, the sides, top andbottom of the calorimeter vessel shall not be more than 10 mmfrom the inner surf

31、ace of the jacket. Mechanical supports forthe calorimeter vessel shall be of low thermal conductivity.6.6 Thermometers:6.6.1 Platinum resistance or thermistor thermometersshall be capable of measuring to the nearest 0.0001C. Thesetypes of thermometers consist of two major subsystems. Thefirst and mo

32、st obvious is the temperature sensing probe itself.The second and equally important aspect is the measurementsubsystem. For both subsystems, the relationship between thethermometer resistance and temperature shall be well charac-terized. The absolute temperature shall be known to 6 0.1Catthe tempera

33、ture of the calorimetric measurement.6.6.2 Assessing the valid working range of the calorimeter,as outlined in 10.9, is sufficient to demonstrate that allimportant aspects of the calorimeter functionality, includingthe thermometry, are in good working order. The traceability ofthe heat of combustion

34、 measurement is governed by thetraceability of the heat of combustion of the benzoic acidcalibrant in addition to meeting the aforementioned criteria.D5865 11a26.6.3 Liquid-in-Glass ThermometersConforming to therequirements for thermometers S56C, S116C, or S117C asprescribed in Specification E2251.6

35、.6.3.1 Thermometer AccessoriesA magnifier is requiredfor reading liquid-in-glass thermometers to one tenth of thesmallest scale division. The magnifier shall have a lens andholder designed so as to minimize errors as a result of parallax.6.7 Sample HolderAn open crucible of platinum, quartz,or base

36、metal alloy. Before use in the calorimeter, heat treatbase metal crucibles for a minimum of4hat500C to ensurethe crucible surface is completely oxidized. Base metal alloycrucibles are acceptable, if after three preliminary firings, theweight does not change by more than 0.0001 g.6.8 Ignition FuseIgn

37、ition fuse of 100-mm length and0.16-mm (No. 34 B filling the calorimeter vessel; firing theignition circuit; recording calorimeter temperatures before,during, and after the test; recording the balance weights; andcarrying out all necessary corrections and calculations.6.11 Crucible LinerQuartz fiber

38、 or alundum for lining thecrucible to promote complete combustion of samples that donot burn completely during the determination of the calorificvalue.37. Reagents7.1 Reagent WaterConforming to conductivity require-ments for Type II of Specification D1193 for preparation ofreagents and washing of th

39、e bomb interior.7.2 Purity of ReagentsUse reagent grade chemicals con-forming to the specification of the Committee on AnalyticalReagents of the American Chemical Society in all tests.47.3 Benzoic AcidStandard (C6H5COOH)Pellets madefrom benzoic acid available from the National Institute ofStandards

40、and Technology (NIST) or benzoic acid calibratedagainst NIST standard material. The calorific value of benzoicacid, for use in the calibration calculations, shall be traceable toa recognized certificate value.7.4 OxygenManufactured from liquid air, guaranteed tobe greater than 99.5 % pure, and free

41、of combustible matter.Oxygen made by the electrolytic process contains smallamounts of hydrogen rendering it unfit unless purified bypassage over copper oxide at 500C.7.5 Titration IndicatorMethyl orange, methyl red, ormethyl purple for indicating the end point when titrating theacid formed during c

42、ombustion. The same indicator shall beused for both calibration and calorific value determinations.7.6 Standard SolutionSodium carbonate (Na2CO3)orother suitable standard solution.Aconvenient standard solutionmay be prepared as follows. Dissolve 3.706 g of sodiumcarbonate, dried for 24 h at 105C, in

43、 water and dilute to 1 L.The resulting concentration (0.0699 N) assumes the energy offormation of HNO3under bomb conditions is -59.7 kJ/mol(-14.3 kcal/mole) (seeX1.1). One milliliter of this solution isequivalent to 4.2 J (1.0 cal) in the acid titration. Alternatively,1.0 ml of a 0.1000 N base solut

44、ion is equivalent to 6.0 J (1.4cal) in the acid titration. In general, one milliliter of an arbitrarystandard titrant solution is equivalent to its concentration(equivalents / liter or normality N) times 59.7 J (14.3 cal).8. Hazards8.1 The following precautions are recommended for safecalorimeter op

45、eration. Additional precautions are noted inPractice E144. Also consult the calorimeter equipment manu-facturers installation and operating instructions before usingthe calorimeter.8.1.1 The mass of sample and any combustion aid as well asthe pressure of the oxygen admitted to the bomb shall notexce

46、ed the bomb manufacturers specifications.8.1.2 Inspect the bomb parts carefully after each use.Replace cracked or significantly worn parts. Replace O-ringsand valve seats in accordance with manufacturers instruction.For more details, consult the manufacturer.8.1.3 Equip the oxygen supply cylinder wi

47、th an approvedtype of safety device, such as a relief valve, in addition to theneedle valve and pressure gauge used in regulating the oxygenfeed to the bomb. Valves, gauges, and gaskets shall meetindustry safety codes. Suitable reducing valves and adaptersfor 3- to 4-MPa (300- to 500-psig) discharge

48、 pressure can beobtained from commercial sources of compressed gas equip-ment. Check the pressure gauge annually for accuracy or afterany accidental over pressures that reach maximum gaugepressure.8.1.4 During ignition of a sample, the operator shall notextend any portion of the body over the calori

49、meter.8.1.5 Do not fire the bomb if the bomb has been dropped orturned over after loading.8.1.6 Do not fire the bomb if there is evidence of gasleakage when the bomb is submerged in the calorimeter vessel.8.1.7 For manually operated calorimeters, the ignitionswitch shall be depressed only long enough to fire the charge.3Supporting data have been filed at ASTM International Headquarters and maybe obtained by requesting Research Report RR:D05-1025.4Reagent Chemicals, American Chemical Society Specifications , AmericanChemical Society, Was

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1