ImageVerifierCode 换一换
格式:PDF , 页数:7 ,大小:162.43KB ,
资源ID:521004      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-521004.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM D5900-2010a 3750 Standard Specification for Physical and Chemical Properties of Industry Reference Materials (IRM)《工业参考材料(IRM)的物理和化学特性的标准规范》.pdf)为本站会员(towelfact221)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM D5900-2010a 3750 Standard Specification for Physical and Chemical Properties of Industry Reference Materials (IRM)《工业参考材料(IRM)的物理和化学特性的标准规范》.pdf

1、Designation: D5900 10aStandard Specification forPhysical and Chemical Properties of Industry ReferenceMaterials (IRM)1This standard is issued under the fixed designation D5900; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the ye

2、ar of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This specification covers the chemical and physicalquality specifications or requirements, or both, for Industry

3、Reference Materials (IRMs) as cited in Practice D4678 andother standards.1.2 IRMs, as evaluated and referenced in Practice D4678,are vitally important to conduct product, specification, anddevelopment testing in the rubber and carbon black industries.1.3 Before a new lot of material can be accepted

4、as an IRM,it must comply with the specifications prescribed in thisspecification. However, these specifications are only part of therequirements. Other requirements as given in Practice D4678shall be met before a candidate material can be formallyaccepted as an IRM.1.4 The values stated in SI units

5、are to be regarded asstandard. No other units of measurement are included in thisstandard.1.5 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practic

6、es and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2D88 Test Method for Saybolt ViscosityD92 Test Method for Flash and Fire Points by ClevelandOpen Cup TesterD97 Test Method for Pour Point of Petroleum ProductsD280 Test Methods for Hy

7、groscopic Moisture (and OtherMatter Volatile Under the Test Conditions) in PigmentsD287 Test Method for API Gravity of Crude Petroleum andPetroleum Products (Hydrometer Method)D445 Test Method for Kinematic Viscosity of Transparentand Opaque Liquids (and Calculation of Dynamic Viscos-ity)D611 Test M

8、ethods for Aniline Point and Mixed AnilinePoint of Petroleum Products and Hydrocarbon SolventsD1278 Test Methods for Rubber from Natural SourcesChemical AnalysisD1416 Test Methods for Rubber from Synthetic SourcesChemical Analysis3D1500 Test Method forASTM Color of Petroleum Products(ASTM Color Scal

9、e)D1519 Test Methods for Rubber ChemicalsDetermination of Melting RangeD1646 Test Methods for RubberViscosity, Stress Relax-ation, and Pre-Vulcanization Characteristics (Mooney Vis-cometer)D1747 Test Method for Refractive Index of Viscous Mate-rialsD1951 Test Method forAsh in Drying Oils and FattyAc

10、ids3D1959 Test Method for Iodine Value of Drying Oils andFatty Acids3D1960 Test Method for Loss on Heating of Drying Oils3D1965 Test Method for Unsaponifiable Matter in DryingOils, Fatty Acids, and Polymerized Fatty Acids3D1980 Test Method for Acid Value of Fatty Acids andPolymerized Fatty Acids3D19

11、82 Test Method for Titer of Fatty AcidsD1993 Test Method for Precipitated Silica-Surface Area byMultipoint BET Nitrogen AdsorptionD2007 Test Method for Characteristic Groups in RubberExtender and Processing Oils and Other Petroleum-Derived Oils by the Clay-Gel Absorption Chromato-graphic MethodD2140

12、 Practice for Calculating Carbon-Type Compositionof Insulating Oils of Petroleum OriginD2161 Practice for Conversion of Kinematic Viscosity toSaybolt Universal Viscosity or to Saybolt Furol ViscosityD2501 Test Method for Calculation of Viscosity-GravityConstant (VGC) of Petroleum OilsD3037 Test Meth

13、ods for Carbon BlackSurface Area by1This specification is under the jurisdiction ofASTM Committee D11 on Rubberand is the direct responsibility of Subcommittee D11.20 on Compounding Materialsand Procedures.Current edition approved July 1, 2010. Published August 2010. Originallyapproved in 1996. Last

14、 previous edition approved in 2010 as D5900 10. DOI:10.1520/D5900-10a.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM

15、 website.3Withdrawn. The last approved version of this historical standard is referencedon www.astm.org.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.Nitrogen Adsorption3D3157 Test Method for Rubber from Natural SourcesColorD3194 T

16、est Method for Rubber From Natural SourcesPlasticity Retention Index (PRI)D3280 Test Methods for Analysis of White Zinc PigmentsD4004 Test Methods for RubberDetermination of MetalContent by Flame Atomic Absorption (AAS) AnalysisD4075 Test Methods for Rubber Compounding MaterialsFlame Atomic Absorpti

17、on AnalysisDetermination ofMetalsD4315 Test Methods for Rubber Compounding MaterialZinc OxideD4569 Test Method for Rubber Compounding MaterialsDetermination of Acidity in SulfurD4570 Test Method for Rubber ChemicalsDeterminationof Particle Size of Sulfur by Sieving (Dry)D4571 Test Methods for Rubber

18、 Compounding MaterialsDetermination of Volatile MaterialD4572 Test Method for Rubber ChemicalsWet SieveAnalysis of SulfurD4574 Test Methods for Rubber Compounding MaterialsDetermination of Ash ContentD4578 Test Methods for Rubber ChemicalsDetermination of Percent Sulfur by ExtractionD4678 Practice f

19、or RubberPreparation, Testing, Accep-tance, Documentation, and Use of Reference MaterialsD4934 Test Method for Rubber Compounding Materials:2-Benzothiazyl Sulfenamide AcceleratorsInsolublesD4936 Test Method for Mercaptobenzothiazole Sulfena-mide Assay by Reduction/TitrationD5289 Test Method for Rubb

20、er PropertyVulcanizationUsing Rotorless Cure MetersD5712 Test Method for Analysis of Aqueous ExtractableProtein in Natural Rubber and Its Products Using theModified Lowry MethodD6499 Test Method for The Immunological Measurementof Antigenic Protein in Natural Rubber and its ProductsD7427 Test Method

21、 for Immunological Measurement ofFour PrincipalAllergenic Proteins (Hev b 1, 3, 5 and 6.02)in Natural Rubber and Its Products Derived from Latex3. Significance and Use3.1 IRMs are vitally important in product and specificationtesting, in research and development work, in technical servicework, and i

22、n quality control operations in the rubber andcarbon black industries. They are especially valuable forreferee purposes. Many ASTM rubber standards for the evalu-ation of natural or synthetic rubber require the use of specificIRMs in their test recipes for better laboratory repeatability andreproduc

23、ibility.3.2 New material lots that have been selected as candidatesfor IRM approval shall conform to the appropriate specifica-tions given in this standard and meet requirements given inPractice D4678 before the lots may be accepted as IRMs.3.3 The chemical and physical IRM specifications shownwill

24、ensure some consistency in IRM properties from one lot tothe next. However, the specifications cannot ensure exactinter-lot consistency.4. Specifications4.1 The following are specifications for Industry ReferenceMaterials (IRMs).4.2 Specification for IRM 14Tetramethyl Thiuram Disul-fide (TMTD):4.2.1

25、 Material description:Appearance is light buff to whitepowder. Specific gravity is 1.5. This material is commonlyused in certain ASTM rubber test recipes as an accelerator insulfur vulcanization.4.2.2 Specifications are given in Table 1.4.3 Specification for IRM 25Benzothiazyl Disulfide(MBTS)4.3.1 M

26、aterial description: Appearance is cream-coloredpowder. Specific gravity is 1.5. This material shall contain 2 60.2 % mineral oil. This material is commonly used as anaccelerator in certain ASTM rubber test recipes in sulfurvulcanization.4.3.2 Specifications are given in Table 2.4.4 Specification fo

27、r IRM 36N-tert-butyl-benzothiazoleSulfenamide (TBBS)4.4.1 Material description: Appearance is light tan or beigepellets approximately18 in. long. Specific gravity is 1.28.4.4.2 Specifications are given in Table 3.4.5 Specification for IRM 216Stearic Acid4.5.1 Material description: Appearance is a fi

28、ne powder orflakes.4.5.2 Specifications are given in Table 4.4.6 Specification for IRM 316Sulfur4.6.1 Material description: Appearance is light to paleyellow powder.4.6.2 Specifications are given in Table 5.4.7 Specification for IRM 437Naphthenic Process Oil:4.7.1 Material description: Appearance is

29、 translucent darkliquid. Specific gravity is 0.9. This material is commonly usedin certain ASTM rubber test recipes as a process oil. This oilhas been hydrotreated.4.7.2 Specifications are given in Table 6.4.8 Specification for IRM 918Zinc Oxide (ZnO):4.8.1 Material description: Appearance is a whit

30、e powder.Specific gravity is 5.6. This material is commonly used in4Lot IRM 1a is no longer available; IRM 1b has not been approved.5A lot IRM 2a has been depleted. Lot IRM 2b has not been approved.6An approved lot has been reserved and is available from Akron RubberDevelopment Lab Inc., 300 Kenmore

31、 Blvd., Akron, OH 44301, website: www.ard-.7No approved lot of IRM 43 has been established.8An approved lot has been reserved and is available from R. E. Carroll, Inc., P.O.Box 5806, Trenton, NJ 08638-0806.TABLE 1 Specification for IRM 1Tetramethyl Thiuram Disulfide(TMTD)Property ASTM Designation Li

32、mitsMelting point, C D1519 142 minAsh, % D4574 0.10 maxLoss on heating at 105C, % loss D4571 0.5 maxWet sieve analysis, % retaining on 100mesh screenD4572 0.05 maxD5900 10a2many ASTM rubber test recipes as an activator and in ASTMtest recipes for testing halogenated elastomers as a vulcanizingagent.

33、4.8.2 Specifications are given in Table 7.4.9 Specification for IRM 2416Butyl Rubber4.9.1 Material description: Appearance is pale white solidrubber. This is a copolymer of isobutylene and isoprene (IIR).The rubber shall be stabilized with a non-staining antioxidantsuitable for long-term storage. Sp

34、ecific gravity is 0.92. Thismaterial is commonly used for the quality control monitoringof Mooney viscometers in accordance with Test MethodsD1646.4.9.2 Specifications are given in Table 8.4.10 Specification for IRM 9018Petroleum Oil:4.10.1 Material description: Appearance is a dark liquid.Specific

35、gravity is 0.8. This oil is a severely solvent refinedheavy paraffinic petroleum oil. Its CAS registry number is64741-88-4. This oil is commonly used in ASTM oil immer-sion tests. Typical properties are as follows: Aromatics, Ca inaccordance with Test Method D2140 is 3 %; pour point inaccordance wit

36、h Test Method D97 is 12C; color in accor-dance with Test Method D1500 is L3.5; refractive index inaccordance with Test Method D1747 is 1.4848; and UVabsorption 260 nm is 0.8.4.10.2 Specifications are given in Table 9.4.11 Specification for IRM 9028Petroleum Oil:4.11.1 Material description: Appearanc

37、e is a light yellow,translucent liquid. Specific gravity is 0.8. This oil is a severelyhydrotreated naphthenic distillate. Its CAS registry number is64742-52-5. This oil is commonly used in ASTM oil immer-sion tests. Typical properties are as follows: Aromatics, Ca inTABLE 2 Specification for IRM 2B

38、enzothiazyl Disulfide (MBTS)Property ASTM Designation LimitsMelting point, C D1519 165 minAsh, % D4574 0.7 maxLoss on heating at 105C, % loss D4571 0.5 maxWet sieve analysis, % retained on 100mesh screenD4572 0.1 maxTABLE 3 Specification for IRM 3N-tert-butyl-benzothiazoleSulfenamide (TBBS)Property

39、ASTM Designation Limit/TargetAssay, % D4936 96 minMelting Point, Initial, C D1519 108 minMelting Point, Final, C D1519 109 minVolatile Matter, % D1416 0.1 maxAsh, % D4574 0.2 maxInsolubles in Methanol, % D4934 0.3 maxTABLE 4 Specification for IRM 21Stearic AcidProperty ASTM Designation Limit/TargetM

40、ineral Acid NoneAcid Value D1980 193 to 199minTiter, C D1982 66 minIodine Value, % D1959 1.0 maxLoss on Heating, % D1960 0.2 maxAsh, % D1951 0.05 maxFat, Unsaponifiables and Insoluble, % D1965 0.5 maxTABLE 5 Specification for IRM 31SulfurProperty ASTM Designation Limit/TargetOrganic Material, % 0.05

41、 maxVolatile Matter, C D4571 0.5 maxAsh, % D4574 0.3 maxInsoluble in CS2,% D4578 0.3 maxAcidity, % D4569 0.005 maxDry analysis, % retained on 100 meshscreenD4570 0.0 maxDry analysis, % retained on 200 meshscreenD4570 5to10TABLE 6 Specification for IRM 43Napthenic Process OilProperty ASTM Designation

42、 Limits/TargetsClay-gel absorption chromatographicanalysisD2007% Asphaltenes 0.3 max% Polar compounds 6.0 max% Saturated hydrocarbon 35.1 to 65.0Viscosity 100C, mm2/s D88 and D2161 16.8 6 1.2Viscosity-gravity constant D2501 0.889 6 0.002TABLE 7 Specification for IRM 91Zinc Oxide (ZnO)Property ASTM D

43、esignation Limits/TargetsSurface area, m2/g D4315 and D3037 4.3 6 0.3% Zinc oxide D3280 99.5 min% Lead D4075 0.08 max% Cadmium D4075 0.08 maxLoss on heating 105C % loss D280 0.50 maxWet sieve analysis, %, retains on 45 m D4315 0.10 maxTABLE 8 Specification for IRM 241Butyl RubberProperty ASTM Design

44、ation Limits/TargetsMooney Viscosity mL 1 + 8 125C(unmassed)D1646 51 6 1Volatile matter, % D1416 0.30 maxAsh, % D1416 0.50 maxTABLE 9 Specification for IRM 901Petroleum OilPropertyASTMDesignationLimit/TargetsViscosity: cst 99C D445 19.23 6 1.11Gravity, API 16C D287 28.8 6 1.0Flash pt. COC, C D92 243

45、 minAniline point, C D611 124 6 1Viscosity-gravity Constant D2140 0.790 0.805Naphthenics Cn% D2140 27 (avg)Paraffinics Cp% D2140 65 minTABLE 10 Specification for IRM 902Petroleum OilProperty ASTM Designation Limits/TargetsViscosity: cst 99C D445 20.35 6 1.15Gravity, API 16C D287 20.0 6 1.0Flash pt.

46、COC, C D92 240 minAniline point, C D611 93.0 6 3.0Viscosity-gravity constant D2140 0.865 6 0.005Naphthenics Cn% D2140 35 minParaffinics Cp% D2140 50 maxD5900 10a3accordance with Test Method D2140 is 12 %; pour point inaccordance with Test Method D97 is 12C; color in accor-dance with Test Method D150

47、0 is L2.5; refractive index inaccordance with Test Method D1747 is 1.5105; and UVabsorbance 260 nm is 4.0.4.11.2 Specifications are given in Table 10.4.12 Specification for IRM 9038Petroleum Oil:4.12.1 Material description: Appearance is a light yellow,translucent liquid. Specific gravity is 0.8. Th

48、is oil is a severelyhydrotreated naphthenic distillate. Its CAS registry number is64742-52-5. This IRM is commonly used in ASTM oilimmersion tests. Typical properties are as follows: Aromatics,Ca in accordance with Test Method D2140 is 14 %; pour pointin accordance with Test Method D97 is 31C; color

49、 inaccordance with Test Method D1500 is L0.5; refractive indexin accordance with Test Method D1747 is 1.5026; and UVabsorbance 260 nm is 2.2.4.12.2 Specifications are given in Table 11.4.13 Specification for IRM 9058Petroleum Oil:4.13.1 Material description: Appearance is an amber liquid.Specific gravity is 0.88. This oil is a severely solvent refinedheavy paraffinic petroleum oil. Its CAS registry number is64741-88-4. This oil is commonly used in ASTM oil immer-sion tests. Typical prop

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1