1、Designation: D 6562 06Standard Test Method forDetermination of Gaseous Hexamethylene Diisocyanate(HDI) in Air with 9-(N-methylaminomethyl) AnthraceneMethod (MAMA) in the Workplace1This standard is issued under the fixed designation D 6562; the number immediately following the designation indicates t
2、he year oforiginal adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon (e) indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers the determination of gas
3、eoushexamethylene diisocyanate (HDI) in air samples collectedfrom workplace and ambient atmospheres. The method de-scribed in this test method collects separate fractions. Onefraction will be dominated by vapor, and the other fraction willbe dominated by aerosol. It is not known at the present timew
4、hether this represents a perfect separation of vapor andaerosol, and in any case, there are not separate exposurestandards for vapor and aerosol. Therefore, in comparing theresults for isocyanate against a standard, results from the twofractions should be combined to give a single total value. There
5、ason for splitting the sample into two fractions is to increaseanalytic sensitivity for the vapor fraction and also to give thehygienist or ventilation engineer some information concerningthe likely state of the isocyanate species. The analyses of thetwo fractions are different, and are provided in
6、separate, linked,standards to avoid confusion. This test method is principallyused to determine short term exposure (15 min) of HDI inworkplace environments for personal monitoring or in ambientair. The analysis of the aerosol fraction is performed separately,as described in Test Method D 6561.1.2 D
7、ifferential air sampling is performed with a segregat-ing device.2The vapor fraction is collected on a glass fiberfilter (GFF) impregnated with 9-(N-methylaminomethyl) an-thracene (MAMA).1.3 The analysis of the gaseous fraction is performed with ahigh performance liquid chromatograph (HPLC) equipped
8、with ultraviolet (UV) and fluorescence detectors.1.4 The range of application of this test method, using UVand fluorescence detectors both connected in serial, has beenvalidated from 0.006 to 1.12 g of monomeric HDI/2.0 mL ofdesorption solution, which corresponds to concentrationsequivalent to 0.000
9、4 to 0.075 mg/m3of HDI based on a 15-Lair sample. Those concentrations correspond to a range ofvapor phase concentrations from 0.06 ppb(V) to 11 ppb(V) andcover the established threshold limit value (TLV) value of 5ppb(V).1.5 The quantification limit for the monomeric HDI, usingthe UV detection, has
10、 been established as 0.012 g/2 mL ofdesorption solution and as 0.008 g/2 mL, using the fluores-cence detector. These limits correspond to 0.0008 mg/m3and0.0005 mg/m3respectively for an air sampled volume of 15 L.These values are equal to ten times the standard deviation (SD)obtained from ten measure
11、ments carried out on a standardsolution in contact with the GFF, whose concentration of 0.02g/2 mL is close to the expected detection limit.1.6 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard t
12、o establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use. See Section 9 foradditional hazards.2. Referenced Documents2.1 ASTM Standards:3D 1193 Specification for Reagent WaterD 1356 Terminology Relating to Sampling and Analysis ofAt
13、mospheresD 1357 Practice for Planning the Sampling of the AmbientAtmosphereD 5337 Practice for Flow Rate Calibration of PersonalSampling PumpsD 6561 Test Method for Determination of Aerosol Mono-meric and Oligomeric Hexamethylene Diisocyanate (HDl)in Air with (Methoxy-2phenyl-1) Piperazine (MOPIP) i
14、nthe Workplace1This test method is under the jurisdiction of ASTM Committee D22 onSampling and Analysis of Atmospheres and is the direct responsibility of Subcom-mittee D22.04 on Workplace Atmospheres.Current edition approved Oct. 1, 2006. Published October 2006. Originallyapproved in 2000. Last pre
15、vious edition approved in 2000 as D 6562 - 00.2The sampling device for isocyanates is covered by a patent held by JacquesLesage et al, IRSST, 505 De Maisonneuve Blvd. West, Montreal, Quebec, Canada.If you are aware of an alternative to this patented item, please provide thisinformation to ASTM Headq
16、uarters. Your comments will receive careful consider-ation at a meeting of the responsible technical committee,1which you may attend.3For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume infor
17、mation, refer to the standards Document Summary page onthe ASTM website.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.2.2 Other Standard:Sampling Guide for Air Contaminants in the Workplace43. Terminology3.1 For definitions of term
18、s used in this test method, refer toTerminology D 1356.4. Summary of Test Method4.1 Vapor and aerosol fractions are sampled simultaneouslyby using a segregating sampling device. The aerosols arecollected on a polyterafluoroethylene (PTFE) filter while thegaseous fraction is being adsorbed on the sec
19、ond filter made ofglass fiber impregnated with MAMA.4.2 The analysis of the oligomer in the aerosol fraction isperformed separately in accordance with the procedure de-scribed in Test Method D 6561.4.3 Diisocyanates present as vapors react with the second-ary amine function of the MAMA, impregnated
20、on the GFF toform a urea derivative (1,2) as shown in Fig. 1.5Desorption of the GFF is done by using a solution mixture of67 % N,N-dimethylformamide and 33 % of a 30:70 buffer-acetonitrile mixture. Monomeric and oligomeric diisocyanatesare separated by using a reversed phase HPLC column,followed by
21、UV (254 nm) and fluorescence detectors (254-nmexcitation and 412-nm emission) in series (3).4.4 Concentration of urea derivative contained in thesamples is calculated by using an external standard of theappropriate urea derivative.5. Significance and Use5.1 HDI is mostly used in the preparation of p
22、aints. For thelast ten years, the use of isocyanates and their industrial needshave been in constant growth.5.2 Diisocyanates and polyisocyanates are irritants to skin,eyes, and mucous membranes. They are recognized to causerespiratory allergic sensitization, asthmatic bronchitis, andacute respirato
23、ry intoxication (4-7).5.3 The American Conference of Governmental IndustrialHygienists (ACGIH) has adopted a threshold limit value - timeweighted average (TLV - TWA) of 0.005 ppm (V) or 0.034mg/m3(8). The Occupational Safety dual filter sampling system; hexameth-ylene diisocyanate; high-performance
24、liquid chromatography;9-(N-methylaminomethyl) anthracene; sampling and analysis;workplace atmospheresREFERENCES(1) Melcher, R.G., Langner, R.R., and Kagel, R.O., “Criteria for theevaluation of methods for the collection of organic pollutants in airusing solid sorbents,” American Industrial Hygiene A
25、ssociation Jour-nal, Vol 39, No. 5, May 1983, pp. 349-361.(2) Dugehn,A., “Improved Chromatographic Procedure for Determinationof 9-(N-methylaminomethyl) anthracene Isocyanate Derivatives byHigh-Performance Liquid Chromatography,” Journal of Chromatog-raphy, No. 301, 1984, pp. 481-484.(3) Lesage, J.,
26、 Goyer, N., Desjardins, F., Vincent, J.-Y., and Perrault, G.,“Workers Exposure to Isocyanates,” American Industrial HygieneAssociation Journal, Vol 53, No. 2, 1992, pp. 146-153.(4) Criteria for a Recommended Standard, Occupational Exposure toToluene Diisocyanate,“ Department of Health, Education and
27、 Welfare,National Institute for Occupational Safety and Health, Cincinnati, OH,No. DHEW (NIOSH) 73-11022, 1973.(5) Woolrich, P.F., “Toxicology, Industrial Hygiene and Medical Controlof TDI, MDI and PMPPI,” American Industrial Hygiene AssociationJournal, Vol 43, 1981, pp. 89-97.(6) Moller, D.R. et al
28、, “Chronic Asthma Due to Toluene Diisocyanate,”Chest Vol 90, No. 4, 1986, pp. 494-499.(7) Butcher, B.T. et al, “Polyisocyanates and Their Prepolymers,” Asthmain the Workplace, edited by I. Leonard Bernstein, Moira Chan -Yeung,Jean- Luc Malo, and David I. Bernstein, Cincinnati, Ohio, Chap. 20,1994, p
29、p. 415-436.(8) Threshold Limit Values for Chemical Substances and Physical Agentsand Biological Exposure Indices, ACGIH, Cincinnati, Ohio, 1993.FIG. 2 Means of the Z-Scores Obtained by 13 Laboratories after n$3 Participations to an Interlaboratory EvaluationD6562065(9) Occupational Safety and Health
30、 Administration (OSHA): OSHAMethod 42: Diisocyanates, OSHA Analytical Laboratory, OrganicMethods Development Branch, Salt Lake City, Utah, 1989.(10) Lesage, J., and Perrault, G., “Sampling Device for Isocyanates,” U.S.Patent No. 4 961 916.(11) Occupational Safety and Health Administration (OSHA): Ev
31、aluationscheme methods that use filters as the collection medium, OSHATechnical Center, OSHAAnalytical Methods Manual, 2nd Ed., Part 2,Salt Lake City, Utah, 1991.(12) The Sigma-Aldrich Library of Chemical Safety Data, 1st Ed., RobertE. Lenga.(13) Guide dchantillonnage des contaminants de lair en mil
32、ieu detravail, Institut de recherche en sant et en scurit du travail duQubec, Montral, 1994.ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentionedin this standard. Users of this standard are expressly advised that determinatio
33、n of the validity of any such patent rights, and the riskof infringement of such rights, are entirely their own responsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years andif not revised, either reapproved or withdra
34、wn. Your comments are invited either for revision of this standard or for additional standardsand should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of theresponsible technical committee, which you may attend. If you feel that your c
35、omments have not received a fair hearing you shouldmake your views known to the ASTM Committee on Standards, at the address shown below.This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959,United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the aboveaddress or at 610-832-9585 (phone), 610-832-9555 (fax), or serviceastm.org (e-mail); or through the ASTM website(www.astm.org).D6562066
copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1