ImageVerifierCode 换一换
格式:PDF , 页数:9 ,大小:329.85KB ,
资源ID:522873      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-522873.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM D6563-2005(2010)e1 8125 Standard Test Method for Benzene Toluene Xylene (BTX) Concentrates Analysis by Gas Chromatography《气象色谱分析法分析苯 甲苯 二甲苯(BTX)浓缩物的标准试验方法》.pdf)为本站会员(towelfact221)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM D6563-2005(2010)e1 8125 Standard Test Method for Benzene Toluene Xylene (BTX) Concentrates Analysis by Gas Chromatography《气象色谱分析法分析苯 甲苯 二甲苯(BTX)浓缩物的标准试验方法》.pdf

1、Designation: D6563 05 (Reapproved 2010)1Standard Test Method forBenzene, Toluene, Xylene (BTX) Concentrates Analysis byGas Chromatography1This standard is issued under the fixed designation D6563; the number immediately following the designation indicates the year oforiginal adoption or, in the case

2、 of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1NOTESection 16 was corrected editorially in July 2010.1. Scope*1.1 This test method covers the determin

3、ation of the totalnonaromatic hydrocarbons, benzene, toluene, ethylbenzene,xylenes, and total C9+ aromatic hydrocarbons in BTX con-centrates by capillary column gas chromatography. This testmethod is applicable to materials with a final boiling pointbelow 215C.1.2 This test method may also be used t

4、o determine therelative distribution of the individual C8aromatic hydrocarbonisomers in mixed xylenes.1.3 Individual components can be determined from 0.01 to90 %.1.4 In determining the conformance of the test results usingthis method to applicable specifications, results shall berounded off in acco

5、rdance with the rounding-off method ofPractice E29.1.5 The values stated in SI units are to be regarded asstandard. No other units of measurement are included in thisstandard.1.6 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibi

6、lity of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use. For a specificprecautionary statement, see Section 9.2. Referenced Documents2.1 ASTM Standards:2D3437 Practice for Sampling and Handling Li

7、quid CyclicProductsD6809 Guide for Quality Control and Quality AssuranceProcedures for Aromatic Hydrocarbons and Related Ma-terialsE29 Practice for Using Significant Digits in Test Data toDetermine Conformance with SpecificationsE355 Practice for Gas Chromatography Terms and Rela-tionshipsE691 Pract

8、ice for Conducting an Interlaboratory Study toDetermine the Precision of a Test MethodE1510 Practice for Installing Fused Silica Open TubularCapillary Columns in Gas Chromatographs2.2 Other Documents:OSHA Regulations, 29 CFR paragraphs 1910.1000 and1910.120033. Terminology3.1 Definitions of Terms Sp

9、ecific to This Standard:3.1.1 extracted reformate, nAn aromatic concentrate ob-tained by solvent extraction of reformate.3.1.2 reformate, nThe product of a catalytic process thatincreases the concentration of aromatic hydrocarbons.3.1.3 pyrolysis gasoline, nDepentanized by-product re-covered from et

10、hylene manufacture.3.1.4 synthetic blend, nBlend of reagent hydrocarbonsthat simulate a process product.3.1.5 hydrogenated pyrolysis gasoline, nPyrolysis gaso-line that has been treated with hydrogen to reduce the olefinscontent.3.1.6 crude ethylbenzene, nProduct produced from thereaction of impure

11、fluid cat cracking, (FCC) ethylene andbenzene.3.1.6.1 DiscussionIt typically contains greater than 40 %of ethylbenzene and benzene.3.1.7 light blending aromatics feedstock, nLight aromat-ics fraction (with high amounts of benzene and toluene)typically recovered from the isomerization of a p-xylene o

12、rm-xylene depleted C8aromatics stream.3.1.8 mixed xylenes, na mixture of C8aromatic hydrocar-bon isomers including ethylbenzene, but excluding stryene.1This test method is under the jurisdiction of ASTM Committee D16 onAromatic Hydrocarbons and Related Chemicals and is the direct responsibility ofSu

13、bcommittee D16.01 on Benzene, Toluene, Xylenes, Cyclohexane and TheirDerivatives.Current edition approved June 15, 2010. Published July 2010. Originallyapproved in 2000. Last previous edition approved in 2005 as D6463 05. DOI:10.1520/D6563-05R10E01.2For referenced ASTM standards, visit the ASTM webs

14、ite, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3Available from U.S. Government Printing Office Superintendent of Documents,732 N. Capitol St., NW, Mail Stop: S

15、DE, Washington, DC 20401, http:/www.access.gpo.gov.1*A Summary of Changes section appears at the end of this standard.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.4. Summary of Test Method4.1 The specimen to be analyzed is injected

16、 into a gaschromatograph equipped with a flame ionization detector (FID)and a capillary column. The peak area of each component ismeasured and adjusted using effective carbon number (ECN)response factors. The concentration of each component iscalculated based on its relative percentages of total adj

17、ustedpeak area and normalized to 100.00. To determine the relativedistribution of C8aromatic hydrocarbons, the peak areas ofthose components only are normalized to 100.00.4.2 Results can be reported as either volume or weightpercent. Volumetric results can be derived by dividing eachcomponents weigh

18、t percent by its relative density and re-normalizing to 100 %.5. Significance and Use5.1 This test method was primarily developed to determinebenzene, toluene, and xylenes in chemical intermediate andsolvent streams such as reformate, BTX extracts, pyrolysisgasoline, hydrogenated pyrolysis gasoline,

19、 crude benzene,crude ethylbenzene, commercial toluene, and light blendingaromatic feedstocks. This test method may not detect allcomponents and there may be unknown components thatwould be assigned inappropriate response factors and thus, theresults may not be absolute.5.2 The relative distribution

20、of C8aromatics is useful fordetermining conformance to p-xylene feedstock specifications.6. Interferences6.1 Nonaromatic hydrocarbons may interfere with the de-termination of benzene and toluene when certain columns areused.6.2 Styrene may be present in some samples. It will elutewith C9+ aromatics.

21、7. Apparatus7.1 Gas ChromatographAny gas chromatograph having aflame ionization detector and a splitter injector suitable for usewith a fused silica capillary column may be used, provided thesystem has sufficient sensitivity, linearity, and range to obtain aminimum peak height response for a 0.01 %

22、peak of five timesthe height of the signal background noise, while not exceedingthe full scale of either the detector or the electronic integrationfor the highest peak. The split injection system shall notdiscriminate over the boiling range of the samples analyzed.The system shall be capable of oper

23、ating at the conditionsgiven in Table 1.7.2 ColumnsThe choice of column is based upon resolu-tion requirements. Any column may be used that is capable ofresolving all the components of interest. The column andconditions described in Table 1 have been used successfullyand will be the referee in case

24、of dispute.7.3 Recorder/Electronic IntegrationElectronic integrationwith tangent capabilities is recommended.8. Reagents8.1 Carrier GasHelium with a minimum purity of 99.99mol %.8.2 Detector GasHydrogen with a minimum purity of99.99 mol %.8.3 Flame Support GasAir, total, hydrocarbon less than 5ppm.9

25、. Hazards9.1 Consult current OSHA regulations, suppliers MaterialSafety Data Sheets, and local regulations for all material usedin this test method.10. Sampling10.1 Sample material in accordance with Practice D3437.11. Preparation of Apparatus11.1 ChromatographFollow manufacturers instructionsfor mo

26、unting and conditioning the column in the chromato-graph. Adjust the instrument to the conditions as described inTable 1 to give the desired separation using the suggestedcolumn. Other columns may require different conditions toachieve the resolution requirements. Allow sufficient time forthe instru

27、ment to reach equilibrium as indicated by a stablerecorder/electronic baseline. See Practices E355 and E1510 foradditional information on gas chromatography practices andterminology.12. Procedure12.1 Bring the sample to ambient room temperature.12.2 Inject an appropriate amount of sample into the ch

28、ro-matograph that meets the criteria outlined in 7.1. See PracticesE355 and E1510 for additional information on gas chromatog-raphy practices and terminology.12.3 Sample chromatograms are illustrated in Figs. 1-4.12.4 Measure the area of all peaks. The non-aromaticsfraction includes all peaks up to

29、ethylbenzene (except for thepeaks assigned to benzene and toluene). Sum together all thenon-aromatic peaks as a total area. The C9+ aromatics fractionincludes all peaks eluting after m-xylene except for 0-xylene.Sum together all the C9+ aromatic peaks as a total area.13. Calculation13.1 Calculate th

30、e weight percent concentration of eachcomponent as follows:TABLE 1 Instrument ParametersColumn 50 or 60 m by 0.25 mm ID bondedpolyethylene glycol-fused silica capillary,internally coated to a 0.25-m thicknessCarrier gas heliumFlow, linear velocity at 70C, cm/s 20Split ratio 200:1Detector gasHydrogen

31、 flow rate, mL/min 30Air flow rate, mL/min 300Make-up flow rate, mL/min 30Sample size, L 0.5TemperaturesInjector, C 250Detector, C 300ColumnInitial, C 70Hold, min 10Rate, C/min 5Final, C 200Hold, min 24D6563 05 (2010)12FIG. 1 Synthetic BlendD6563 05 (2010)13FIG. 2 Pyrolysis GasolineD6563 05 (2010)14

32、FIG. 3 Extracted ReformateD6563 05 (2010)15FIG. 4 Mixed XylenesD6563 05 (2010)16Ci5100 3 Ai3 ECNi(i 5 1nAi3 ECNi!(1)where:Ci= concentration of component inweight percent,Ai= area of component, i peak,ECNi= effective carbon response factorfor component, and(i 5 1nAi3 ECNi! = the summation of all resp

33、onse cor-rected areas in the chromatogram.13.2 Calculate the volume percent concentration of eachcomponent as follows:V 5100 C/D(i 5 1nC/D!(2)where:V = calculated vol % concentration of component,C = calculated wt % concentration of component from12.1,D = relative density of component, andi=1n= sum

34、of the quotients C/D.13.3 Use the following effective carbon number (ECN)response factors for the calculations:ComponentECN ResponseFactorA,BRelative DensityCat15.56CNon Aromatics 1.0000 0.7200 (average)Benzene 0.9100 0.8829Toluene 0.9200 0.8743Ethylbenzene 0.9275 0.8744p-Xylene 0.9275 0.8666m-Xylen

35、e 0.9275 0.8694o-Xylene 0.9275 0.8849C9+ aromatics 0.9333 0.8752 (average)AScanlon, J., T., and Willis, D., E., “Calculation of Flame Ionization DetectorRelative Response Factors Using the Effective Carbon Number Concept” Journalof Chromatographic Science, Vol 35, August, 1985, pp. 333-339.BResponse

36、 Factors are relative to n-heptane.CDS#4APhysical Constants of Hydrocarbons C1through C10, ASTM, 1971.13.4 Calculate the weight percent relative distribution ofeach C8aromatic hydrocarbon as follows:F15100 3 B1(i 5 1nB1(3)where:F1= concentration of component in weight percent,B1= peak area of compon

37、ent i and peak area of all C8aromatic isomers.14. Report14.1 Report the following information:14.1.1 All component concentrations to the nearest 0.01 wt(or vol) %.14.1.2 For concentrations less than 0.01 wt (or vol) %,report as 0.01 wt (or vol) %.15. Precision and Bias415.1 PrecisionThe following cr

38、iteria should be used tojudge the acceptability of results obtained by this test method(95 % confidence level). The precision criteria were derivedfrom an interlaboratory study using data submitted by fourteenlaboratories (ten laboratories for mixed xylenes. Each inter-laboratory study participant w

39、as provided two gravimetricallyprepared BTX known samples and three unknown samples ofvarying concentrations. Each sample was run twice on twodays by two different operators. Results of the interlaboratorystudy were calculated and analyzed using Practice E691.15.2 Intermediate Precision, (formerly R

40、epeatability)Results in the same laboratory should not be consideredsuspect unless they differ by more than 6 the amount shown inTable 2, Table 3, Table 4, Table 5, Table 6,orTable 7.Onthebasis of test error alone, the difference between two resultsobtained in the same laboratory on the same materia

41、l will beexpected to exceed this value only 5 % of the time.15.3 ReproducibilityResults submitted by each of twolaboratories should not be considered suspect unless they differby more than 6 the amount shown in Table 2, Table 3, Table4, Table 5,orTable 6. On the basis of test error alone, thediffere

42、nce between two results obtained in different laborato-ries on the same material will be expected to exceed this valueonly 5 % of the time.4Supporting data have been filed at ASTM International Headquarters and maybe obtained by requesting Research Report RR:D16-1025. Supporting data formixed xylene

43、s are available separately: Request Research Report RR:D16-1015.TABLE 2 Interlaboratory Precision and Reproducibility forSynthetic Blend SampleNOTE 1This data was calculated after removal of outliers usingPractice E691.ComponentConcentrationWeight %IntermediatePrecisionReproducibilityNonaromatics 22

44、.447 0.296 1.746Benzene 42.891 0.781 1.887Toluene 19.961 0.212 0.715Ethylbenzene 3.061 0.055 0.191Total xylenes 7.921 0.195 0.512C9+ aromatics 4.192 0.169 1.009TABLE 3 Interlaboratory Precision and Reproducibility forPyrolysis Gasoline SampleNOTE 1This data was calculated after removal of outliers u

45、singPractice E691.ComponentConcentrationWeight %IntermediatePrecisionReproducibilityNonaromatics 17.918 0.237 1.394Benzene 36.580 0.666 1.610Toluene 17.117 0.181 0.613Ethylbenzene 1.519 0.027 0.095Total xylenes 6.271 0.154 0.406C9+ aromatics 20.419 0.823 4.917D6563 05 (2010)1715.4 BiasFor mixed xyle

46、nes, the interlaboratory test uti-lized a sample prepared gravimetrically from individual fromindividual C8isomers obtained at the highest purity available.However, this sample has not been approved as an acceptablereference material and consequently bias has not been deter-mined.15.4.1 As an aid fo

47、r the users in determining the possibilityof bias, calculated C8distributed for the round robin sample islisted in Table 7 as the “Expected Concentration.” The averagevalue for each C8isomer as calculated from the reportedconcentrations is listed as “Average Concentration Reported.”16. Quality Guide

48、lines16.1 Laboratories shall have a quality control system inplace.16.1.1 Confirm the performance of the test instrument ortest method by analyzing a quality control sample followingthe guidelines of standard statistical quality control practices.16.1.2 A quality control sample is a stable material

49、isolatedfrom the production process and representative of the samplebeing analyzed.16.1.3 When QA/QC protocols are already established inthe testing facility, these protocols are acceptable when theyconfirm the validity of test results.16.1.4 When there are no QA/QC protocols established inthe testing facility, use the guidelines described in GuideD6809 or similar statistical quality control practices.17. Keywords17.1 BTX concentrates; BTX extracts; capillary gas chro-matography; commercial toluene; crude benzene; crude ethyl

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1