ImageVerifierCode 换一换
格式:PDF , 页数:74 ,大小:1.38MB ,
资源ID:522975      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-522975.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM D6593-2014a 1534 Standard Test Method for Evaluation of Automotive Engine Oils for Inhibition of Deposit Formation in a Spark-Ignition Internal Combustion Engine Fueled with G.pdf)为本站会员(eventdump275)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM D6593-2014a 1534 Standard Test Method for Evaluation of Automotive Engine Oils for Inhibition of Deposit Formation in a Spark-Ignition Internal Combustion Engine Fueled with G.pdf

1、Designation: D6593 14aStandard Test Method forEvaluation of Automotive Engine Oils for Inhibition ofDeposit Formation in a Spark-Ignition Internal CombustionEngine Fueled with Gasoline and Operated Under Low-Temperature, Light-Duty Conditions1This standard is issued under the fixed designation D6593

2、; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval

3、.1. Scope*1.1 This test method covers and is commonly referred to asthe Sequence VG test,2and it has been correlated with vehiclesused in stop-and-go service prior to 1996, particularly withregard to sludge and varnish formation.3It is one of the testmethods required to evaluate oils intended to sat

4、isfy the APISL performance category.1.2 The values stated in SI units are to be regarded as thestandard. No other units of measurement are included in thisstandard.1.2.1 ExceptionWhere there is no direct SI equivalentsuch as screw threads, national pipe threads/diameters, tubingsize, or specified si

5、ngle source equipment.1.3 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior

6、to use. Specific hazardstatements are given in 7.7, 7.10.2.2, 8.3.4.2, 8.4.4.3, 9.2.6,9.3.4.5, 12.1.1.7, 12.2.1.4, and Annex A1.1.4 A Table of Contents follows:SectionScope 1Referenced Documents 2Terminology 3Summary of Test Method 4Significance and Use 5Apparatus (General Description) 6Apparatus (T

7、he Test Engine) 7Sequence VG Test Engine 7.1Required New Engine Parts 7.2Reusable Engine Parts 7.3Specially Fabricated Engine Parts 7.4Special Engine Measurement and Assembly Equipment 7.5Miscellaneous Engine Components-Preparation 7.6Solvents and Cleaners Required 7.7Assembling the Test Engine-Prep

8、arations 7.8Assembling the Test Engine-Installations 7.9Engine Installation on the Test Stand 7.10Engine Fluids (Supply/Discharge Systems) 8Intake Air 8.1Fuel and Fuel System 8.2Engine Oil and Engine Oil System 8.3Coolants 8.4Measurement Instrumentation 9Temperatures 9.1Pressures 9.2Flow Rates 9.3Fu

9、el Consumption 9.4Speed and Load 9.5Exhaust Gas 9.6Humidity 9.7Miscellaneous Laboratory Equipment 10Test Stand Calibration 11Test Procedure 12Pre-Test Procedure 12.1Engine Operating Procedure 12.2Periodic Measurements and Functions 12.3Special Maintenance Procedures 12.4Diagnostic Data Review 12.5En

10、d of Test Procedure 12.6Interpretation of Test Results 13Parts Rating Area-Environment 13.1Sludge Ratings 13.2Varnish Ratings 13.3Clogging 13.41This test method is under the jurisdiction of ASTM Committee D02 onPetroleum Products, Liquid Fuels, and Lubricants and is the direct responsibility ofSubco

11、mmittee D02.B0.01 on Passenger Car Engine Oils.Current edition approved Oct. 1, 2014. Published October 2014. Originallyapproved in 2000. Last previous edition approved in 2014 as D6593 14. DOI:10.1520/D6593-14A.2Until the next revision of this test method, the ASTM Test Monitoring Centerwill update

12、 changes in the test method by means of information letters. Informationletters may be obtained from the ASTM Test Monitoring Center, 6555 Penn Ave.,Pittsburgh, PA 15206-4489. Attention: Administrator. This edition incorporatesrevisions in all information Letters through No. 143.3Supporting data hav

13、e been filed at ASTM International Headquarters and maybe obtained by requesting Research Report RR:D02-1472.*A Summary of Changes section appears at the end of this standardCopyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States1Sticking 13.

14、5Used Oil Analyses 13.6Additional Measurements 13.7Assessment of Test Validity 14General 14.1Used Oil Analyses-Interpretation 14.2Blowby Flow Rate 14.3Manifold Absolute Pressure 14.4Fuel Consumption Rate 14.5Oil Consumption 14.6Engine Parts Replacement 14.7Quality Index and Deviation Percentage 14.8

15、Final Test Report 15Report Forms 15.1Precision and Bias 16Keywords 17ANNEXESSafety Hazards Annex A1Control and Data Acquisition Requirements Annex A2Detailed Specifications and Photographs of Apparatus Annex A3Special Service Tools for the Test Engine Annex A4Test Engine Part Number Listing Annex A5

16、External Oil Heat Exchanger Cleaning Technique Annex A6Sequence VG Report Forms and Data Dictionary Annex A7Dipstick Calibration Annex A8Critical Part Supplier List Annex A9Operational Data Log-Engine Oil Annex A10Rating Worksheets Annex A11Fuel Injector Flow Measurements Annex A12APPENDIXESPiston a

17、nd Ring Measurements Record Forms Appendix X1Sources of Materials and Information Appendix X2Description of Scott Quarterly Gas Audit Service Appendix X32. Referenced Documents2.1 ASTM Standards:4D86 Test Method for Distillation of Petroleum Products atAtmospheric PressureD235 Specification for Mine

18、ral Spirits (Petroleum Spirits)(Hydrocarbon Dry Cleaning Solvent)D287 Test Method for API Gravity of Crude Petroleum andPetroleum Products (Hydrometer Method)D323 Test Method for Vapor Pressure of Petroleum Products(Reid Method)D381 Test Method for Gum Content in Fuels by Jet Evapo-rationD445 Test M

19、ethod for Kinematic Viscosity of Transparentand Opaque Liquids (and Calculation of Dynamic Viscos-ity)D525 Test Method for Oxidation Stability of Gasoline (In-duction Period Method)D873 Test Method for Oxidation Stability of Aviation Fuels(Potential Residue Method)D1266 Test Method for Sulfur in Pet

20、roleum Products (LampMethod)D1298 Test Method for Density, Relative Density, or APIGravity of Crude Petroleum and Liquid Petroleum Prod-ucts by Hydrometer MethodD2622 Test Method for Sulfur in Petroleum Products byWavelength Dispersive X-ray Fluorescence SpectrometryD2789 Test Method for Hydrocarbon

21、 Types in Low OlefinicGasoline by Mass SpectrometryD3237 Test Method for Lead in Gasoline byAtomicAbsorp-tion SpectroscopyD3525 Test Method for Gasoline Diluent in Used GasolineEngine Oils by Gas ChromatographyD4057 Practice for Manual Sampling of Petroleum andPetroleum ProductsD4175 Terminology Rel

22、ating to Petroleum, PetroleumProducts, and LubricantsD4294 Test Method for Sulfur in Petroleum and PetroleumProducts by Energy Dispersive X-ray Fluorescence Spec-trometryD4485 Specification for Performance of Active API ServiceCategory Engine OilsD5059 Test Methods for Lead in Gasoline by X-Ray Spec

23、-troscopyD5185 Test Method for Multielement Determination ofUsed and Unused Lubricating Oils and Base Oils byInductively Coupled Plasma Atomic Emission Spectrom-etry (ICP-AES)D5862 Test Method for Evaluation of Engine Oils in Two-Stroke Cycle Turbo-Supercharged 6V92TA Diesel Engine(Withdrawn 2009)5D

24、6304 Test Method for Determination of Water in Petro-leum Products, Lubricating Oils, and Additives by Cou-lometric Karl Fischer TitrationD7422 Test Method for Evaluation of Diesel Engine Oils inT-12 Exhaust Gas Recirculation Diesel EngineG40 Terminology Relating to Wear and Erosion2.2 ANSI Standard

25、:6ANSI MC96.1 Temperature Measurement-Thermocouples2.3 Other ASTM Documents:ASTM Deposit Rating Manual 20 (Formerly CRC Manual20)73. Terminology3.1 Definitions:3.1.1 air-fuel ratio, nin internal combustion engines, themass ratio of air-to-fuel in the mixture being inducted into thecombustion chamber

26、s.3.1.1.1 DiscussionIn this test method, air-fuel ratio(AFR), is controlled by the EEC IV engine control module.D41753.1.2 blowby, nin internal combustion engines, that por-tion of the combustion products and unburned air/fuel mixturethat leaks past piston rings into the engine crankcase duringopera

27、tion.3.1.3 cold-stuck piston ring, nin internal combustionengines, a piston ring that is stuck when the piston and ring areat room temperature, but inspection shows that it was freeduring engine operation.4For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer S

28、ervice at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.5The last approved version of this historical standard is referenced onwww.astm.org.6Available from American National Standards Institute (ANSI), 25 W. 43rd

29、 St.,4th Floor, New York, NY 10036.7For stock #TMCMNL20, visit the ASTM website, www.astm.org, or contactASTM Customer Service at serviceastm.org.D6593 14a23.1.3.1 DiscussionA cold-stuck piston ring cannot bemoved with moderate finger pressure. It is characterized by apolished face over its entire c

30、ircumference, indicating essen-tially no blowby passed over the ring face during engineoperation. D41753.1.4 debris, nin internal combustion engines, solid con-taminant materials unintentionally introduced into the engineor resulting from wear.3.1.4.1 DiscussionExamples include such things as gasket

31、material, silicone sealer, towel threads, and metal particles.D58623.1.5 filtering, nin data acquisition, a means of attenuat-ing signals in a given frequency range. They can be mechanical(volume tank, spring, mass) or electrical (capacitance, induc-tance) or digital (mathematical formulas), or a co

32、mbinationthereof. Typically, a low-pass filter attenuates the unwantedhigh frequency noise.3.1.6 hot-stuck piston ring, nin internal combustionengines, a piston ring that is stuck when the piston and ring areat room temperature, and inspection shows that it was stuckduring engine operation.3.1.6.1 D

33、iscussionThe portion of the ring that is stuckcannot be moved with moderate finger pressure. A hot-stuckpiston ring is characterized by varnish or carbon across someportion of its face, indicating that portion of the ring was notcontacting the cylinder wall during engine operation. D41753.1.7 knock,

34、 nin a spark ignition engine, abnormalcombustion, often producing audible sound, caused by autoi-gnition of the air/fuel mixture. D41753.1.8 out of specification data, nin data acquisition,sampled value of a monitored test parameter that has deviatedbeyond the procedural limits.3.1.9 reading, nin da

35、ta acquisition, the reduction of datapoints that represent the operating conditions observed in thetime period as defined in the test procedure.3.1.10 scoring, nin tribology, a severe form of wearcharacterized by the formation of extensive grooves andscratches in the direction of sliding. G403.1.11

36、scuffng, nin lubrication, damage caused by instan-taneous localized welding between surfaces in relative motionthat does not result in immobilization of the parts.3.1.12 sludge, nin internal combustion engines, a deposit,principally composed of insoluble resins and oxidation prod-ucts from fuel comb

37、ustion and the lubricant, that does not drainfrom engine parts but can be removed by wiping with a cloth.D41753.1.13 time constant, nin data acquisition, A value whichrepresents a measure of the time response of a system. For afirst order system responding to a step change input, it is thetime requi

38、red for the output to reach 63.2 % of its final value.3.1.14 varnish, nin internal combustion engines, a hard,dry, generally lustrous deposit that can be removed by solventsbut not by wiping with a cloth. D41753.1.15 wear, nloss of material from a surface, generallyoccurring between two surfaces in

39、relative motion, and result-ing from mechanical or chemical action, or a combination ofboth. D74223.2 Definitions of Terms Specific to This Standard:3.2.1 clogging, nthe restriction of a flow path due to theaccumulation of material along the flow path boundaries.3.2.2 enrichment, nin internal combus

40、tion engineoperation, a fuel consumption rate in excess of that whichwould achieve a stoichiometric air-to-fuel ratio.3.2.2.1 DiscussionEnrichment is usually indicated by el-evated CO levels and can also be detected with an extendedrange air/fuel ratio sensor.3.2.3 Lambda, nthe ratio of actual air m

41、ass induced,during engine operation, divided by the theoretical air massrequirement at the stoichiometric air-fuel ratio for the givenfuel.3.2.3.1 DiscussionA Lambda value of 1.0 denotes a stoi-chiometric air-fuel ratio.3.2.4 low-temperature, light-duty conditions, nindicativeof engine oil and coola

42、nt temperatures that average belownormal warmed-up temperatures, and engine speeds and poweroutputs that average below those encountered in typical high-way driving.3.2.5 ramping, nthe prescribed rate of change of a vari-able when one set of operating conditions is changed to anotherset of operating

43、 conditions.4. Summary of Test Method4.1 Each test engine is assembled with many new parts andessentially all aspects of assembly are specified in detail.4.2 The test stand is equipped to control speed, torque,AFR,and various other operating parameters.4.3 The test is run for a total of 216 h, consi

44、sting of 54cycles of 4 h each. Each cycle consists of three stages.4.4 While the operating conditions are varied within eachcycle, overall they can be characterized as a mixture oflow-temperature and moderate-temperature, light and mediumduty operating conditions.4.5 To accelerate deposit formation,

45、 the level of oxides ofnitrogen in the blowby and the rate of blowby into thecrankcase are significantly increased. The fresh air breathing ofthe crankcase is eliminated and the oil and coolant tempera-tures are lowered to induce condensation of water and fuel.4.6 The performance of the test engine

46、oil is evaluated at theend of the test by dismantling the engine and measuring thelevel of deposit formation.5. Significance and Use5.1 This test method is used to evaluate an automotiveengine oils control of engine deposits under operating condi-tions deliberately selected to accelerate deposit for

47、mation. Thistest method was correlated with field service data, determinedfrom side-by-side comparisons of two or more oils in police,taxi fleets, and delivery van services. The same field serviceoils were then used in developing the operating conditions ofthis test procedure.D6593 14a35.2 This test

48、 method, along with other test methods, definesthe minimum performance level of the API Category SL(detailed information about this category is included in Speci-fication D4485). This test method is also incorporated inautomobile manufacturers factory-fill specifications.5.3 The basic engine used in

49、 this test method is representa-tive of many that are in modern automobiles. This factor, alongwith the accelerated operating conditions, should be consideredwhen interpreting test results.6. Apparatus (General Description)6.1 The test engine is a Ford, spark ignition, four stroke,eight-cylinder V configuration engine with a displacement of4.6 L. Features of this engine include an overhead camshaft, aFIG. 1 Schematic of Engine Fuel SystemD6593 14a4cross-flow fast-burn cylinder head design, two valves percylinder and electronic port fuel injection.

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1