ImageVerifierCode 换一换
格式:PDF , 页数:76 ,大小:2.52MB ,
资源ID:522977      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-522977.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM D6593-2015a 6957 Standard Test Method for Evaluation of Automotive Engine Oils for Inhibition of Deposit Formation in a Spark-Ignition Internal Combustion Engine Fueled with G.pdf)为本站会员(eventdump275)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM D6593-2015a 6957 Standard Test Method for Evaluation of Automotive Engine Oils for Inhibition of Deposit Formation in a Spark-Ignition Internal Combustion Engine Fueled with G.pdf

1、Designation: D6593 15aStandard Test Method forEvaluation of Automotive Engine Oils for Inhibition ofDeposit Formation in a Spark-Ignition Internal CombustionEngine Fueled with Gasoline and Operated Under Low-Temperature, Light-Duty Conditions1This standard is issued under the fixed designation D6593

2、; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval

3、.INTRODUCTIONPortions of this test method are written for use by laboratories that make use of ASTM TestMonitoring Center (TMC)2services (see Annex A1).The TMC provides reference oils, and engineering and statistical services to laboratories that desireto produce test results that are statistically

4、similar to those produced by laboratories previouslycalibrated by the TMC.In general, the Test Purchaser decides if a calibrated test stand is to be used. Organizations such astheAmerican Chemistry Council require that a laboratory utilize the TMC services as part of their testregistration process.

5、In addition, the American Petroleum Institute and the Gear Lubricant ReviewCommittee of the Lubricant Review Institute (SAE International) require that a laboratory use theTMC services in seeking qualification of oils against their specifications.The advantage of using the TMC services to calibrate

6、test stands is that the test laboratory (andhence the Test Purchaser) has an assurance that the test stand was operating at the proper level of testseverity. It should also be borne in mind that results obtained in a non-calibrated test stand may notbe the same as those obtained in a test stand part

7、icipating in the ASTM TMC services process.Laboratories that choose not to use the TMC services may simply disregard these portions.1. Scope*1.1 This test method covers and is commonly referred to asthe Sequence VG test,2and it has been correlated with vehiclesused in stop-and-go service prior to 19

8、96, particularly withregard to sludge and varnish formation.3It is one of the testmethods required to evaluate oils intended to satisfy the APISL performance category.1.2 The values stated in SI units are to be regarded as thestandard. No other units of measurement are included in thisstandard.1.2.1

9、 ExceptionWhere there is no direct SI equivalentsuch as screw threads, national pipe threads/diameters, tubingsize, or specified single source equipment.1.3 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of th

10、is standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use. Specific hazardstatements are given in 7.7, 7.10.2.2, 8.3.4.2, 8.4.4.3, 9.2.6,9.3.4.5, 12.1.1.7, 12.2.1.4, and Annex A5.1.4 A Table of Contents follows:SectionSc

11、ope 1Referenced Documents 2Terminology 3Summary of Test Method 4Significance and Use 5Apparatus (General Description) 6Apparatus (The Test Engine) 7Sequence VG Test Engine 7.1Required New Engine Parts 7.2Reusable Engine Parts 7.3Specially Fabricated Engine Parts 7.4Special Engine Measurement and Ass

12、embly Equipment 7.51This test method is under the jurisdiction of ASTM Committee D02 onPetroleum Products, Liquid Fuels, and Lubricants and is the direct responsibility ofSubcommittee D02.B0.01 on Passenger Car Engine Oils.Current edition approved Oct. 1, 2015. Published October 2015. Originallyappr

13、oved in 2000. Last previous edition approved in 2015 as D6593 15. DOI:10.1520/D6593-15A.2Until the next revision of this test method, the ASTM Test Monitoring Centerwill update changes in the test method by means of information letters. Informationletters may be obtained from the ASTM Test Monitorin

14、g Center, 6555 Penn Ave.,Pittsburgh, PA 15206-4489. Attention: Administrator. This edition incorporatesrevisions in all information Letters through No. 145.3Supporting data have been filed at ASTM International Headquarters and maybe obtained by requesting Research Report RR:D02-1472.*A Summary of C

15、hanges section appears at the end of this standardCopyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States1Miscellaneous Engine Components-Preparation 7.6Solvents and Cleaners Required 7.7Assembling the Test Engine-Preparations 7.8Assembling t

16、he Test Engine-Installations 7.9Engine Installation on the Test Stand 7.10Engine Fluids (Supply/Discharge Systems) 8Intake Air 8.1Fuel and Fuel System 8.2Engine Oil and Engine Oil System 8.3Coolants 8.4Measurement Instrumentation 9Temperatures 9.1Pressures 9.2Flow Rates 9.3Fuel Consumption 9.4Speed

17、and Load 9.5Exhaust Gas 9.6Humidity 9.7Miscellaneous Laboratory Equipment 10Test Stand Calibration 11Test Procedure 12Pre-Test Procedure 12.1Engine Operating Procedure 12.2Periodic Measurements and Functions 12.3Special Maintenance Procedures 12.4Diagnostic Data Review 12.5End of Test Procedure 12.6

18、Interpretation of Test Results 13Parts Rating Area-Environment 13.1Sludge Ratings 13.2Varnish Ratings 13.3Clogging 13.4Sticking 13.5Used Oil Analyses 13.6Assessment of Test Validity 14General 14.1Used Oil Analyses-Interpretation 14.2Blowby Flow Rate 14.3Manifold Absolute Pressure 14.4Fuel Consumptio

19、n Rate 14.5Oil Consumption 14.6Engine Parts Replacement 14.7Quality Index and Deviation Percentage 14.8Final Test Report 15Report Forms 15.1Precision and Bias 16Keywords 17ANNEXESASTM Test Monitoring Center Organization Annex A1ASTM Test Monitoring Center: Calibration Procedures Annex A2ASTM Test Mo

20、nitoring Center: Maintenance Activities Annex A3ASTM Test Monitoring Center: Related Information Annex A4Safety Precautions Annex A5Control and Data Acquisition Requirements Annex A6Detailed Specifications and Photographs of Apparatus Annex A7Special Service Tools for the Test Engine Annex A8Test En

21、gine Part Number Listing Annex A9External Oil Heat Exchanger Cleaning Technique Annex A10Sequence VG Report Forms and Data Dictionary Annex A11Dipstick Calibration Annex A12Critical Part Supplier List Annex A13Operational Data Log-Engine Oil Annex A14Rating Worksheets Annex A15Fuel Injector Flow Mea

22、surements Annex A16APPENDIXESPiston and Ring Measurements Record Forms Appendix X1Sources of Materials and Information Appendix X2Description of Scott Quarterly Gas Audit Service Appendix X32. Referenced Documents2.1 ASTM Standards:4D86 Test Method for Distillation of Petroleum Products atAtmospheri

23、c PressureD235 Specification for Mineral Spirits (Petroleum Spirits)(Hydrocarbon Dry Cleaning Solvent)D287 Test Method for API Gravity of Crude Petroleum andPetroleum Products (Hydrometer Method)D323 Test Method for Vapor Pressure of Petroleum Products(Reid Method)D381 Test Method for Gum Content in

24、 Fuels by Jet Evapo-rationD445 Test Method for Kinematic Viscosity of Transparentand Opaque Liquids (and Calculation of Dynamic Viscos-ity)D525 Test Method for Oxidation Stability of Gasoline (In-duction Period Method)D873 Test Method for Oxidation Stability of Aviation Fuels(Potential Residue Metho

25、d)D1266 Test Method for Sulfur in Petroleum Products (LampMethod)D1298 Test Method for Density, Relative Density, or APIGravity of Crude Petroleum and Liquid Petroleum Prod-ucts by Hydrometer MethodD2622 Test Method for Sulfur in Petroleum Products byWavelength Dispersive X-ray Fluorescence Spectrom

26、etryD2789 Test Method for Hydrocarbon Types in Low OlefinicGasoline by Mass SpectrometryD3237 Test Method for Lead in Gasoline byAtomicAbsorp-tion SpectroscopyD3525 Test Method for Gasoline Diluent in Used GasolineEngine Oils by Gas ChromatographyD4057 Practice for Manual Sampling of Petroleum andPe

27、troleum ProductsD4175 Terminology Relating to Petroleum, PetroleumProducts, and LubricantsD4294 Test Method for Sulfur in Petroleum and PetroleumProducts by Energy Dispersive X-ray Fluorescence Spec-trometryD4485 Specification for Performance of Active API ServiceCategory Engine OilsD5059 Test Metho

28、ds for Lead in Gasoline by X-Ray Spec-troscopyD5185 Test Method for Multielement Determination ofUsed and Unused Lubricating Oils and Base Oils byInductively Coupled Plasma Atomic Emission Spectrom-etry (ICP-AES)D5862 Test Method for Evaluation of Engine Oils in Two-Stroke Cycle Turbo-Supercharged 6

29、V92TA Diesel Engine(Withdrawn 2009)5D6304 Test Method for Determination of Water in Petro-leum Products, Lubricating Oils, and Additives by Cou-lometric Karl Fischer TitrationD7422 Test Method for Evaluation of Diesel Engine Oils inT-12 Exhaust Gas Recirculation Diesel EngineE29 Practice for Using S

30、ignificant Digits in Test Data toDetermine Conformance with Specifications4For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe

31、ASTM website.5The last approved version of this historical standard is referenced onwww.astm.org.D6593 15a2G40 Terminology Relating to Wear and Erosion2.2 ANSI Standard:6ANSI MC96.1 Temperature Measurement-Thermocouples2.3 Other ASTM Documents:ASTM Deposit Rating Manual 20 (Formerly CRC Manual20)73.

32、 Terminology3.1 Definitions:3.1.1 air-fuel ratio, nin internal combustion engines, themass ratio of air-to-fuel in the mixture being inducted into thecombustion chambers.3.1.1.1 DiscussionIn this test method, air-fuel ratio(AFR), is controlled by the EEC IV engine control module.D41753.1.2 blowby, n

33、in internal combustion engines, that por-tion of the combustion products and unburned air/fuel mixturethat leaks past piston rings into the engine crankcase duringoperation.3.1.3 cold-stuck piston ring, nin internal combustionengines, a piston ring that is stuck when the piston and ring areat room t

34、emperature, but inspection shows that it was freeduring engine operation.3.1.3.1 DiscussionA cold-stuck piston ring cannot bemoved with moderate finger pressure. It is characterized by apolished face over its entire circumference, indicating essen-tially no blowby passed over the ring face during en

35、gineoperation. D41753.1.4 debris, nin internal combustion engines, solid con-taminant materials unintentionally introduced into the engineor resulting from wear.3.1.4.1 DiscussionExamples include such things as gasketmaterial, silicone sealer, towel threads, and metal particles.D58623.1.5 filtering,

36、 nin data acquisition, a means of attenuat-ing signals in a given frequency range. They can be mechanical(volume tank, spring, mass) or electrical (capacitance, induc-tance) or digital (mathematical formulas), or a combinationthereof. Typically, a low-pass filter attenuates the unwantedhigh frequenc

37、y noise.3.1.6 hot-stuck piston ring, nin internal combustionengines, a piston ring that is stuck when the piston and ring areat room temperature, and inspection shows that it was stuckduring engine operation.3.1.6.1 DiscussionThe portion of the ring that is stuckcannot be moved with moderate finger

38、pressure. A hot-stuckpiston ring is characterized by varnish or carbon across someportion of its face, indicating that portion of the ring was notcontacting the cylinder wall during engine operation. D41753.1.7 knock, nin a spark ignition engine, abnormalcombustion, often producing audible sound, ca

39、used by autoi-gnition of the air/fuel mixture. D41753.1.8 out of specification data, nin data acquisition,sampled value of a monitored test parameter that has deviatedbeyond the procedural limits.3.1.9 reading, nin data acquisition, the reduction of datapoints that represent the operating conditions

40、 observed in thetime period as defined in the test procedure.3.1.10 scoring, nin tribology, a severe form of wearcharacterized by the formation of extensive grooves andscratches in the direction of sliding. G403.1.11 scuffng, nin lubrication, damage caused by instan-taneous localized welding between

41、 surfaces in relative motionthat does not result in immobilization of the parts.3.1.12 sludge, nin internal combustion engines, a deposit,principally composed of insoluble resins and oxidation prod-ucts from fuel combustion and the lubricant, that does not drainfrom engine parts but can be removed b

42、y wiping with a cloth.D41753.1.13 time constant, nin data acquisition, A value whichrepresents a measure of the time response of a system. For afirst order system responding to a step change input, it is thetime required for the output to reach 63.2 % of its final value.3.1.14 varnish, nin internal

43、combustion engines, a hard,dry, generally lustrous deposit that can be removed by solventsbut not by wiping with a cloth. D41753.1.15 wear, nloss of material from a surface, generallyoccurring between two surfaces in relative motion, and result-ing from mechanical or chemical action, or a combinatio

44、n ofboth. D74223.2 Definitions of Terms Specific to This Standard:3.2.1 clogging, nthe restriction of a flow path due to theaccumulation of material along the flow path boundaries.3.2.2 enrichment, nin internal combustion engineoperation, a fuel consumption rate in excess of that whichwould achieve

45、a stoichiometric air-to-fuel ratio.3.2.2.1 DiscussionEnrichment is usually indicated by el-evated CO levels and can also be detected with an extendedrange air/fuel ratio sensor.3.2.3 Lambda, nthe ratio of actual air mass induced,during engine operation, divided by the theoretical air massrequirement

46、 at the stoichiometric air-fuel ratio for the givenfuel.3.2.3.1 DiscussionA Lambda value of 1.0 denotes a stoi-chiometric air-fuel ratio.3.2.4 low-temperature, light-duty conditions, nindicativeof engine oil and coolant temperatures that average belownormal warmed-up temperatures, and engine speeds

47、and poweroutputs that average below those encountered in typical high-way driving.3.2.5 ramping, nthe prescribed rate of change of a vari-able when one set of operating conditions is changed to anotherset of operating conditions.4. Summary of Test Method4.1 Each test engine is assembled with many ne

48、w parts andessentially all aspects of assembly are specified in detail.6Available from American National Standards Institute (ANSI), 25 W. 43rd St.,4th Floor, New York, NY 10036.7For stock #TMCMNL20, visit the ASTM website, www.astm.org, or contactASTM Customer Service at serviceastm.org.D6593 15a34

49、.2 The test stand is equipped to control speed, torque,AFR,and various other operating parameters.4.3 The test is run for a total of 216 h, consisting of 54cycles of 4 h each. Each cycle consists of three stages.4.4 While the operating conditions are varied within eachcycle, overall they can be characterized as a mixture oflow-temperature and moderate-temperature, light and mediumduty operating conditions.4.5 To accelerate deposit formation, the level of oxides ofnitrogen in the blowby and the rate of blowby into thecrankcase are significantly increas

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1