ImageVerifierCode 换一换
格式:PDF , 页数:6 ,大小:87.43KB ,
资源ID:522986      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-522986.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM D6595-2000(2011) 9375 Standard Test Method for Determination of Wear Metals and Contaminants in Used Lubricating Oils or Used Hydraulic Fluids by Rotating Disc Electrode Atomi.pdf)为本站会员(赵齐羽)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM D6595-2000(2011) 9375 Standard Test Method for Determination of Wear Metals and Contaminants in Used Lubricating Oils or Used Hydraulic Fluids by Rotating Disc Electrode Atomi.pdf

1、Designation: D6595 00 (Reapproved 2011)Standard Test Method forDetermination of Wear Metals and Contaminants in UsedLubricating Oils or Used Hydraulic Fluids by Rotating DiscElectrode Atomic Emission Spectrometry1This standard is issued under the fixed designation D6595; the number immediately follo

2、wing the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method

3、covers the determination of wearmetals and contaminants in used lubricating oils and usedhydraulic fluids by rotating disc electrode atomic emissionspectroscopy (RDE-AES).1.2 This test method provides a quick indication for abnor-mal wear and the presence of contamination in new or usedlubricants an

4、d hydraulic fluids.1.3 This test method uses oil-soluble metals for calibrationand does not purport to relate quantitatively the values deter-mined as insoluble particles to the dissolved metals. Analyticalresults are particle size dependent and low results may beobtained for those elements present

5、in used oil samples as largeparticles.1.4 The test method is capable of detecting and quantifyingelements resulting from wear and contamination ranging fromdissolved materials to particles approximately 10 m in size.1.5 The values stated in SI units are to be regarded asstandard. No other units of m

6、easurement are included in thisstandard.1.5.1 The preferred units are mg/kg (ppm by mass).1.6 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practic

7、es and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2D4057 Practice for Manual Sampling of Petroleum andPetroleum Products3. Terminology3.1 Definitions:3.1.1 burn, vtin emission spectroscopy, to vaporize andexcite a specimen with suffi

8、cient energy to generate spectralradiation.3.1.2 calibration, nthe determination of the values of thesignificant parameters by comparison with values indicated bya set of reference standards.3.1.3 calibration curve, nthe graphical or mathematicalrepresentation of a relationship between the assigned

9、(known)values of standards and the measured responses from themeasurement system.3.1.4 calibration standard, na standard having an ac-cepted value (reference value) for use in calibrating a measure-ment instrument or system.3.1.5 emission spectroscopy, nmeasurement of energyspectrum emitted by or fr

10、om an object under some form ofenergetic stimulation; for example, light, electrical discharge,and so forth.3.2 Definitions of Terms Specific to This Standard:3.2.1 arc discharge, na self-sustaining, high current den-sity, high temperature discharge, uniquely characterized by acathode fall nearly eq

11、ual to the ionization potential of the gasor vapor in which it exists.3.2.2 check sample, na reference material usually pre-pared by a laboratory for its own use as a calibration standard,as a measurement control standard, or for the qualification of ameasurement method.3.2.3 contaminant, nmaterial

12、in an oil sample that maycause abnormal wear or lubricant degradation.3.2.4 counter electrode, neither of two graphite electrodesin an atomic emission spectrometer across which an arc orspark is generated.3.2.5 graphite disc electrode, na soft form of the elementcarbon manufactured into the shape of

13、 a disc for use as acounter electrode in arc/spark spectrometers for oil analysis.1This test method is under the jurisdiction of ASTM Committee D02 onPetroleum Products and Lubricants and is the direct responsibility of SubcommitteeD02.03 on Elemental Analysis.Current edition approved May 1, 2011. P

14、ublished August 2011. Originallyapproved in 2000. Last previous edition approved in 2005 as D659500(2005).DOI: 10.1520/D6595-00R11.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume informa

15、tion, refer to the standards Document Summary page onthe ASTM website.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.3.2.6 graphite rod electrode, na soft form of the elementcarbon manufactured into the shape of a rod for use as aco

16、unter electrode in arc/spark spectrometers for oil analysis.3.2.7 profiling, nto set the actual position of the entranceslit to produce optimum measurement intensity.3.2.8 standardization, nthe process of reestablishing andcorrecting a calibration curve through the analysis of at leasttwo known oil

17、standards.3.2.9 uptake rate, nthe amount of oil sample that isphysically carried by the rotating disc electrode into the arc foranalysis.3.2.10 wear metal, nmaterial resulting from damage to asolid surface due to relative motion between that surface and acontacting substance or substances.4. Summary

18、 of Test Method4.1 Wear metals and contaminants in a used oil test speci-men are evaporated and excited by a controlled arc dischargeusing the rotating disk technique. The radiant energies ofselected analytical lines and one or more references arecollected and stored by way of photomultiplier tubes,

19、 chargecoupled devices or other suitable detectors. A comparison ismade of the emitted intensities of the elements in the used oiltest specimen against those measured with calibration stan-dards. The concentrations of the elements present in the oil testspecimen are calculated and displayed. They ma

20、y also beentered into a data base for processing.5. Significance and Use5.1 Used Lubricating OilThe determination of debris inused oil is a key diagnostic method practiced in machinecondition monitoring programs. The presence or increase inconcentration of specific wear metals can be indicative of t

21、heearly stages of wear if there are baseline concentration data forcomparison.Amarked increase in contaminant elements can beindicative of foreign materials in the lubricants, such asantifreeze or sand, which may lead to wear or lubricantdegradation. The test method identifies the metals and theirco

22、ncentration so that trends relative to time or distance can beestablished and corrective action can be taken prior to moreserious or catastrophic failure.6. Interferences6.1 SpectralMost spectral interferences can be avoided byjudicious choice of spectral lines. High concentrations ofadditive elemen

23、ts can have an interfering influence on thespectral lines used for determining wear metals. Instrumentmanufacturers usually compensate for spectral interferencesduring factory calibration. A background correction system,which subtracts unwanted intensities on either side of thespectral line, shall a

24、lso be used for this purpose. When spectralinterferences cannot be avoided with spectral line selection andbackground correction, the necessary corrections shall be madeusing the computer software supplied by the instrument manu-facturer.6.2 Viscosity EffectsDifferences in viscosity of used oilsampl

25、es will cause differences in uptake rates. Internal refer-ences of the instrument will compensate for a portion of thedifferences. In used oil applications, the hydrogen 486.10 nmspectral line has become the industry standard for use as aninternal reference. Without a reference, trended data on used

26、 oilwill be adversely affected if the sample base stock has adifferent viscosity from the base line samples.6.3 ParticulateWhen large particles over 10 m in sizeare detected, the analytical results will be lower than the actualconcentration they represent. Large particles may not beeffectively trans

27、ported by the rotating disk electrode sampleintroduction system into the arc, nor will they be fullyvaporized by the spark.7. Apparatus7.1 Electrode SharpenerAn electrode sharpener is neces-sary to remove the contaminated portion of the rod electroderemaining from the previous determination. It also

28、 forms a new160 angle on the end of the electrode. Electrode sharpenersare not required for instruments using a pre-shaped discelectrode as the counter electrode.7.2 Rotating Disc Electrode Atomic Emission Spectrometer,a simultaneous spectrometer consisting of excitation source,polychromator optics,

29、 and a readout system. Suggested ele-ments and wavelengths are listed in Table 1. When multiplewavelengths are listed, they are in the order of preference ordesired analytical range.7.3 Heated Ultrasonic Bath (Recommended), an ultrasonicbath to heat and homogenize used oil samples to bring particles

30、into homogeneous suspension. The ultrasonic bath shall beused on samples containing large amount of debris and thosethat have been in transit or stored for 48 hours or longer.8. Reagents and Materials8.1 Base Oil, a 75 cSt base oil free of analyte to be used asa calibration blank or for blending cal

31、ibration standards.8.2 Check Samples, An oil standard or sample of knownconcentration which is periodically analyzed as a go/no gosample to confirm the need for standardization based on anallowable 610 % accuracy limit.8.3 Cleaning Solution, An environmentally safe, non-chlorinated, rapid evaporatin

32、g, and non-film producing solvent,to remove spilled or splashed oil sample in the sample stand.8.4 Disc Electrode, a graphite disc electrode of high-puritygraphite (spectroscopic grade). Dimensions of the electrodesshall conform to those shown in Fig. 1.TABLE 1 Elements and Recommended WavelengthsEl

33、ement Wavelength, nm Element Wavelength, nmAluminum 308.21 Nickel 341.48Barium 230.48, 455.40 Phosphorus 255.32, 214.91Boron 249.67 Potassium 766.49Calcium 393.37, 445.48 Silicon 251.60Chromium 425.43 Silver 328.07, 243.78Copper 324.75, 224.26 Sodium 588.89, 589.59Iron 259.94 Tin 317.51Lead 283.31 T

34、itanium 334.94Lithium 670.78 Tungsten 400.87Manganese 403.07, 294.92 Vanadium 290.88, 437.92Magnesium 280.20, 518.36 Zinc 213.86Molybdenum 281.60D6595 00 (2011)28.5 Glass Cleaning Solution, capable of cleaning and re-moving splashed oil sample from the quartz window thatprotects the entrance lens an

35、d fiber optic. Isopropyl rubbingalcohol or ammonia based window cleaner has been found tobe suitable for this purpose.8.6 Organometallic Standards, single or multi-elementblended standards for use as the high concentration standardfor instrument standardization purposes or for use as a checksample t

36、o confirm calibration. Typical concentrations in theupper calibration point standard for used oil applications is 100mg/kg for wear metals and contaminants, and 900 mg/kg foradditive elements.8.6.1 Standards have a shelf-life and shall not be used tostandardize an instrument if they have exceeded th

37、e expirationdate.8.7 Counter ElectrodeThe counter electrode can be eithera rod or a disc. The counter electrode must be high-puritygraphite (spectroscopic grade). Dimensions of the counterelectrodes shall conform to those shown in Fig. 2.8.8 Specimen HoldersA variety of specimen holders canbe used f

38、or the analysis of used oil samples. Disposablespecimen holders must be discarded after each analysis andreusable specimen holders must be cleaned after each analysis.All specimen holders must be free of contamination and shallbe stored accordingly. Specimen holder and covers shall beused on hydraul

39、ic oil samples that may catch on fire during theanalysis.9. Sampling9.1 The used oil sample taken for the analysis must berepresentative of the entire system. Good sampling proceduresare key to good analyses and samples must be taken inaccordance with Practice D4057.10. Preparation of Test Specimen1

40、0.1 HomogenizationUsed oil samples may contain par-ticulate matter and, in order to be representative, must alwaysbe vigorously shaken prior to pouring a test specimen foranalysis.10.2 Ultrasonic HomogenizationSamples that have beenin transit for several days, idle in storage or very viscous, shallb

41、e placed in a heated ultrasonic bath to break up clusters ofparticles and to bring them back into suspension. The samplesshall be vigorously shaken after being in the ultrasonic bathand prior to pouring a test specimen for analysis. The bathtemperature shall be at least 60C and the total agitation t

42、imeat least 2 min.10.3 Specimen HoldersUsed oil samples and oil standardsshall be poured into a specimen holder of at least 1 mLcapacityprior to analysis. Exercise care to pour the sample consistentlyto the same level in the specimen holders to maintain goodrepeatability of analysis.10.4 Specimen Ta

43、bleThe specimen table shall be adjustedso that when it is in the fully raised position, at least one-thirdof the disc electrode is immersed in the oil test specimen.11. Preparation of Apparatus11.1 Warm-up BurnsIf the instrument has been idle forseveral hours, it may be necessary to conduct at least

44、 threewarm-up burns to stabilize the excitation source. The warm-upprocedure can be performed with any oil sample or standard.Consult the manufacturers instructions for specific warm-uprequirements.11.2 Optical ProfilePerform the normal optical profileprocedure called for in the operation manual of

45、the instrument.An optical profile shall also be performed if the instrument hasbeen inoperative for an extended period of time or if thetemperature has shifted more than 10C since the last calibra-tion check.11.3 Validation CheckA go/no go standardization checkcan be performed with one or more check

46、 samples to confirmcalibration prior to the analysis of routine samples. A calibra-tion standard or known oil sample can be used for this purpose.The optical profile and standardization routine recommendedby the instrument manufacturer shall be performed if thevalidation check fails to meet the 610

47、% accuracy guidelinesfor each element of interest.12. Calibration12.1 Factory CalibrationThe analytical range for eachelement is established through the analysis of organometallicstandards at known concentrations.Acalibration curve for eachelement is established and correction factors are set to pro

48、ducea linear response. Analyses of test specimens must be per-formed within the linear range of response. The typicalelements and recommended wavelengths determined in theused oil analysis applications are listed in Table 1.12.2 Routine StandardizationA minimum of a two pointroutine standardization

49、shall be performed if the instrumentfails the validation check or at the start of each working shift.A minimum of three analyses shall be made using the blankand working standard.13. Procedure13.1 Analysis of Oil SamplesAnalyze the test specimen inthe same calibration curve program and manner as the stan-dardization standards. A new disc electrode and re-pointed rodelectrode or new counter disc electrode must be used for eachanalysis. A laboratory grade paper towel or installation toolshall be used to install the disc electrode in order to protec

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1