ImageVerifierCode 换一换
格式:PDF , 页数:5 ,大小:92.75KB ,
资源ID:524001      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-524001.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM D6925-2009 952 Standard Test Method for Preparation and Determination of the Relative Density of Hot Mix Asphalt (HMA) Specimens by Means of the Superpave Gyratory Compactor《用.pdf)为本站会员(roleaisle130)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM D6925-2009 952 Standard Test Method for Preparation and Determination of the Relative Density of Hot Mix Asphalt (HMA) Specimens by Means of the Superpave Gyratory Compactor《用.pdf

1、Designation: D 6925 09Standard Test Method forPreparation and Determination of the Relative Density ofHot Mix Asphalt (HMA) Specimens by Means of theSuperpave Gyratory Compactor1This standard is issued under the fixed designation D 6925; the number immediately following the designation indicates the

2、 year oforiginal adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers the compaction of cylindric

3、alspecimens of hot mix asphalt (HMA) using the SuperpaveGyratory Compactor (SGC). This standard also refers to thedetermination of the relative density of the compacted speci-mens at any point in the compaction process. Compactedspecimens are suitable for volumetric and physical propertytesting.1.2

4、The values stated in SI units are to be regarded asstandard. No other units of measurement are included in thisstandard.1.3 The text of this test method references notes andfootnotes which provide explanatory material. These notes andfootnotes (excluding those in tables and figures) shall not becons

5、idered as requirements of the standard.1.4 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory l

6、imitations prior to use.2. Referenced Documents2.1 ASTM Standards:2D 1188 Test Method for Bulk Specific Gravity and Densityof Compacted Bituminous Mixtures Using CoatedSamplesD 2041 Test Method for Theoretical Maximum SpecificGravity and Density of Bituminous Paving MixturesD 2726 Test Method for Bu

7、lk Specific Gravity and Densityof Non-Absorptive Compacted Bituminous MixturesD 3666 Specification for Minimum Requirements forAgen-cies Testing and Inspecting Road and Paving MaterialsD 4402 Test Method for Viscosity Determination ofAsphaltat Elevated Temperatures Using a Rotational ViscometerD 475

8、3 Guide for Evaluating, Selecting, and SpecifyingBalances and Standard Masses for Use in Soil, Rock, andConstruction Materials Testing2.2 AASHTO Standards:3AASHTO PP2 Practice for Short and Long Term Aging ofHot Mix Asphalt (HMA).AASHTO PP35 Provisional Practice for Evaluation of Su-perpave Gyratory

9、 Compactors (SGCs)AASHTO PP48 Practice for Evaluation of Superpave Gy-ratory Compactor (SGC) Internal Angle of GyrationAASHTO T312 Preparing and Determining the Density ofHot-Mix Asphalt (HMA) Specimens by means of theSuperpave Gyratory Compactor32.3 Other References:ANSI B46.1 American National Sta

10、ndards Institute4Asphalt Institute MS-2 Mix Design Methods for AsphaltConcrete53. Significance and Use3.1 This test method is used to prepare specimens fordetermining the volumetric and physical properties of com-pacted HMA mix.3.2 This test method is useful for monitoring the density oftest specime

11、ns during the compaction process. This testmethod is suited for the laboratory design and field control ofHMA.NOTE 1The quality of the results produced by this standard aredependent on the competence of the personnel performing the procedureand the capability, calibration, and maintenance of the equ

12、ipment used.Agencies that meet the criteria of Standard Practice D 3666 are generallyconsidered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance withPractice D 3666 alone does not completely assure reliable results. Reliableresu

13、lts depend on many factors; following the suggestions of Practice1This test method is under the jurisdiction of ASTM Committee D04 on Roadand Paving Materials and is the direct responsibility of Subcommittee D04.20 onMechanical Tests of Bituminous Mixtures.Current edition approved July 1, 2009. Publ

14、ished July 2009. Originally approvedin 2003. Last previous edition approved in 2008 as D 6925 08.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Docum

15、ent Summary page onthe ASTM website.3Available from American Association of State Highway and TransportationOfficials (AASHTO), 444 N. Capitol St., NW, Suite 249, Washington, DC 20001,http:/www.transportation.org.4Available from American National Standards Institute (ANSI), 25 W. 43rd St.,4th Floor,

16、 New York, NY 10036, http:/www.ansi.org.5Available from Asphalt Institute, 2696 Research Park Dr., Lexington, KY40511, http:/www.asphaltinstitute.org.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.D 3666 or some similar acceptable g

17、uideline provides a means ofevaluating and controlling some of those factors.4. Apparatus4.1 Superpave Gyratory CompactorAn electromechani-cal, electro-hydraulic, or electro-pneumatic compactor com-prised of the following system components: (1) reaction frame,and drive motor, (2) loading system, loa

18、ding ram, and pressureindicator, (3) recording system for height measurement andnumber of gyrations, and (4) mold and base plate.4.1.1 The reaction frame shall provide a non-compliantstructure against which the vertical loading ram can push whencompacting specimens. Reaction bearings shall be capabl

19、e ofcreating, and firmly maintaining during the compaction pro-cess, an external angle of gyration of 21.8 6 0.4 mrad (1.25 60.02 degrees).NOTE 2Research has shown external angle (measurement betweenthe external mold wall and the frame of the compactor) to be differentfrom the internal angle (measur

20、ement between internal mold wall and topand bottom plate). The difference between these measurements varies fordifferent types of compactors. Some discrepancies in relative density havebeen resolved by use of the internal angle adjustment. Agencies maychoose the internal angle as the basis for calib

21、ration. If internal angle ischosen for calibration the recommendation of the Superpave expert taskgroup is to use an internal angle of 20.2 6 0.4 mrad (1.16 6 0.02 degrees).(See AASHTO PP48 for the procedure to determine the internal angle).4.1.2 The rotating base and drive motor shall be capable of

22、gyrating the specimen at a rate of 30.0 6 0.5 revolutions perminute. The compactor shall be designed to permit the speci-men mold to gyrate freely on its tilted axis during compaction.4.1.3 The loading system, ram, and pressure indicator shallbe capable of providing and measuring a constant vertical

23、pressure of 600 6 60 kPa during the first five gyrations, and600 6 18 kPa during the remainder of the compaction process.NOTE 3The report on the ruggedness evaluation of AASHTO TP46indicated that the pressure tolerance of 618 kPa resulted in significantlydifferent values of bulk specific gravity of

24、the compacted specimens (Gmb)in some cases. However, since the pressure is directly set at 600 kPa, thetolerance of 618 kPa should apply only to the ability of the SGC tomaintain vertical pressure during compaction. To minimize potentialerrors caused by pressure, operators should take care during ve

25、rification ofcalibration to assure that the specified pressure has been attained.4.1.4 The axis of the loading ram shall be perpendicular tothe platen of the compactor.4.1.5 The height measurement and recording system shallbe capable of continuously measuring and recording the heightof the specimen

26、during the compaction process to the nearest0.1 mm. The height shall be recorded once per gyration.4.1.6 The system shall record test information, such asspecimen heights per gyration. This may be accomplishedthrough data acquisition or printing.4.2 Specimen MoldsSpecimen molds shall have steelwalls

27、 that are at least 7.5 mm thick and are hardened toRockwell C48 or better. Molds shall have an inside diameter of149.90 mm to 150.00 mm and be at least 250 mm high. Theinside finish of the molds shall be smooth (rms of 1.60 mm orsmoother when measured in accordance with ANSI B46.1).4.3 Mold Plates a

28、nd Ram HeadsAll mold plates and ramheads shall be fabricated from steel with a minimum Rockwellhardness of C48. The mold plates and ram heads shall be flat.Mold plates and ram heads (if in contact with the HMAspecimen) shall have an outside diameter of 149.50 mm to149.75 mm.4.4 ThermometersArmored,

29、glass, or dial type thermom-eters with metal stems for determining the temperature ofaggregates, asphalt binders, and asphalt mixtures between10C and 232C, with a minimum sensitivity of 3C.4.5 BalanceThe balance shall have a minimum capacityof 10 000 g with a sensitivity of 0.1 g. The balance shallc

30、onform to Specification D 4753 as a Class GP2 balance.4.6 OvensTwo ovens are recommended. One oven shallbe a forced draft oven capable of maintaining the temperaturerequired, nominally 135C, for short term aging as described in6.5. At least one more oven shall be available for heatingaggregates, asp

31、halt binders, and equipment. This oven shallhave a range to a minimum of 204C, thermostatically con-trolled to 63C.4.7 MiscellaneousMiscellaneous equipment may include:flat bottom metal pans for heating aggregates; scoops forbatching aggregates; containers for heating asphalt binders;mixing spoons;

32、trowels; spatulas; welders gloves for handlinghot equipment; 150 mm paper disks; lubricants for movingparts; laboratory timers; and mechanical mixers.5. Standardization5.1 Items requiring periodic verification of calibration in-clude the vertical pressure, angle of gyration, frequency ofgyration, he

33、ight measurement system, and oven temperature.Verification of the mold and platen dimensions and smoothnessof finish is also required. Verification of calibration, systemstandardization, and quality checks shall be performed by themanufacturer, other agencies providing standardization ser-vices, or

34、in-house personnel.5.2 It is required that the user verify the calibration of thefollowing items following the manufacturers recommenda-tions: angle, pressure, height, and rotational speed.NOTE 4If no manufacturer recommendations are available, the fol-lowing schedule should be sufficient to assure

35、the user that the SGC isoperating using the proper parameters:Angle of gyration monthlyVertical Pressure monthlyHeight Measurement System monthlyFrequency of Gyration quarterlyMold and platen dimensions annuallyCalibration shall be performed if the gyratory compactor is transportedto a new location.

36、NOTE 5Unknown SGC equipment shall be evaluated using proce-dures described in AASHTO PP35 to assess its ability to producecompacted specimens at various compaction levels which are equivalentto two models of SGC (Pine and Troxler), which have been used by mostof the state DOTs in the past, and are k

37、nown to have met thespecifications.6The Superpave Gyratory Compactor, McGennis, R; Kennedy, TW; Anderson,VL; Perdomo, D, Journal of theAssociation ofAsphalt Paving Technologists Vol: 66D69250926. Preparation and Compaction of Test Specimens(Laboratory Design)6.1 Preparation of AggregatesWeigh and co

38、mbine theappropriate aggregate fractions to the desired specimen weight.The specimen weight will vary based on the ultimate disposi-tion of the test specimens. If a target air void level is desired,specimen weights will be adjusted to create a given density ina known volume. If the specimens are to

39、be used for determi-nation of volumetric properties, the weights will be adjusted toresult in a compacted specimen having dimensions of 150 mmin diameter and 115 6 5 mm in height at the required numberof gyrations.NOTE 6It may be necessary to produce a trial specimen to achievethis height requiremen

40、t. Generally, 4500 to 4700 g of aggregate arerequired to achieve this height for aggregates with combined bulk specificgravities of 2.55 to 2.70 respectively.NOTE 7Details of aggregate preparation may be found in any suitablemix design manual, such as the Asphalt Institutes MS-2.NOTE 8The required n

41、umber of gyrations for purposes of determiningvolumetric properties of an asphalt mixture specimen is based primarilyon design traffic. Table 1 shows recommended number of gyrations fordesign traffic levels.6.2 Place the blended aggregate specimens and asphaltbinder in an oven and bring to the requi

42、red mixing temperature.Heat the mixing container and all necessary mixing imple-ments to the required temperature.6.2.1 The laboratory mixing temperature range is typicallydefined as the range of temperatures where the unaged asphaltbinder has a kinematic viscosity of 170 6 20 mm2/s (approxi-mately

43、0.17 6 0.02 Pa-s for an asphalt binder density of 1.000g/cm3) measured in accordance with Test Method D 4402.NOTE 9Modified asphalt binders, especially those produced withpolymer additives, generally do not adhere to the equiviscous ranges notedin 6.2.1 and 6.6.1. The user should refer to the asphal

44、t binder manufacturerto establish appropriate mixing and compaction temperature ranges. In nocase should the mixing temperature exceed 175C.6.3 Charge the heated mixing bowl with the dry, heatedaggregate and mix the dry aggregates. Form a crater in theheated aggregate blend and weigh the required am

45、ount ofasphalt binder into the aggregate blend. Immediately initiatemixing.6.4 Mix the asphalt binder and aggregate as quickly andthoroughly as possible to yield an asphalt mixture having auniform distribution of asphalt binder. Because of the largebatch weights, a mechanical mixer is preferable for

46、 the mixingprocess.6.5 After completing the mixing process, subject the loosemix to short-term conditioning for 2 h 6 5 min at thecompaction temperature 63C. Stir the mix after 60 6 5 minto maintain uniform conditioning.6.6 Place a compaction mold assembly in an oven at therequired compaction temper

47、ature 65C for a minimum of 45min prior to the compaction of the first mixture specimen(during the time the mixture is in the conditioning processdescribed in 6.5).6.6.1 The compaction temperature range is defined as therange of temperatures where the unaged asphalt binder has akinematic viscosity of

48、 280 6 30 mm2/s (approximately 0.28 60.03 Pa-s for an asphalt binder density of 1.000 g/cm3)measured in accordance with Test Method D 4402. See alsoNote 9.6.7 Verify the settings on the compactor. Unless notedotherwise, the SGC should be initialized to provide specimencompaction using the settings d

49、escribed in 4.1.6.8 At the end of the conditioning period, remove the loosemix sample and the compaction mold assembly from the oven.Place a paper disk inside the mold to aid separation of thespecimen from the base plate after compaction.6.9 Quickly place the mixture into the mold using a transferbowl or other suitable device. Take care to minimize segrega-tion of the mixture in the mold. After the mixture has beencompletely loaded into the mold place a paper disk on themixture to avoid material adhering to the ram head or top moldplate. If necessary,

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1