ImageVerifierCode 换一换
格式:PDF , 页数:16 ,大小:246.68KB ,
资源ID:524662      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-524662.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM D7158-2008b 317 Standard Test Method for Wind Resistance of Sealed Asphalt Shingles (Uplift Force Uplift Resistance Method).pdf)为本站会员(bonesoil321)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM D7158-2008b 317 Standard Test Method for Wind Resistance of Sealed Asphalt Shingles (Uplift Force Uplift Resistance Method).pdf

1、Designation: D 7158 08bStandard Test Method forWind Resistance of Sealed Asphalt Shingles (Uplift Force/Uplift Resistance Method)1This standard is issued under the fixed designation D 7158; the number immediately following the designation indicates the year oforiginal adoption or, in the case of rev

2、ision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon (e) indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers the procedure for calculatingthe wind resistance of asphalt shingles when

3、applied inaccordance with the manufacturers instructions, and sealedunder defined conditions. Shingle designs that depend oninterlocking or product rigidity to resist the wind cannot beevaluated using this test method. The method calculates theuplift force exerted on the shingle by the action of win

4、d at aspecified velocity, and compares that to the mechanical upliftresistance of the shingle. A shingle is determined to be windresistant at a specified basic wind speed when the measureduplift resistance exceeds the calculated uplift force for thatvelocity (3-second gust, ASCE 7).1.2 The values st

5、ated in SI units are to be regarded as thestandard. The values given in parentheses are for informationonly.1.3 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety

6、and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2D 225 Specification for Asphalt Shingles (Organic Felt)Surfaced With Mineral GranulesD 228 Test Methods for Sampling, Testing, and Analysis ofAsphalt Roll Roofing,

7、Cap Sheets, and Shingles Used inRoofing and WaterproofingD 1079 Terminology Relating to Roofing and Waterproof-ingD 3161 Test Method for Wind-Resistance of AsphaltShingles (Fan-Induced Method)D 3462 Specification forAsphalt Shingles Made from GlassFelt and Surfaced with Mineral GranulesD 6381 Test M

8、ethod for Measurement of Asphalt ShingleMechanical Uplift Resistance2.2 ASCE Standard:ASCE 702 Minimum Design Loads for Buildings andOther Structures32.3 ANSI/UL Standard:ANSI/UL 239004 Test Method for Wind ResistantAsphaltShingles with Sealed Tabs43. Terminology3.1 Definitions:3.1.1 For definition

9、of terms used in this test method, referto Terminology D 1079.3.2 Definitions of Terms Specific to This Standard:3.2.1 sealantas it relates to steep roofing shingles,isdefined as factory-applied or field-applied typically asphalticmaterial designed to seal the shingles to each other under theaction

10、of time and temperature after the shingles are applied toa roof.3.2.2 sealas it relates to steep roofing shingles,isthebonding that results from the activation of the sealant under theaction of time and temperature.3.2.3 sealedthe condition of the shingles after they aresubjected to the conditioning

11、 procedure described in 10.3.4. Types and Classes of Shingles4.1 Shingles are classified based on their resistance to windvelocities determined from measured data (Section 11), calcu-lations of uplift force (Section 12), and interpretation of results(Section 13), as follows:4.1.1 Class DPassed at ba

12、sic wind speeds up to andincluding 145 km/h (90 mph).1This test method is under the jurisdiction ofASTM Committee D08 on Roofingand Waterproofing and is the direct responsibility of Subcommittee D08.02 onPrepared Roofings, Shingles and Siding Materials.Current edition approved May 1, 2008. Published

13、 May 2008. Originallyapproved in 2005. Last previous edition approved in 2008 as D 7158 08a.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document S

14、ummary page onthe ASTM website.3Available from American Society of Civil Engineers (ASCE), 1801 AlexanderBell Dr., Reston, VA 20191.4Available from American National Standards Institute (ANSI), 25 W. 43rd St.,4th Floor, New York, NY 10036.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box

15、C700, West Conshohocken, PA 19428-2959, United States.4.1.2 Class GPassed at basic wind speeds up to andincluding 193 km/h (120 mph).4.1.3 Class HPassed at basic wind speeds up to andincluding 242 km/h (150 mph).5. Summary of Test Method5.1 The uplift force induced by wind passing over thesurface of

16、 asphalt shingles is determined by calculation involv-ing the uplift coefficients obtained from pressures measuredabove and below the shingle at the windward and leeward sidesof the sealant, taking into account the desired basic wind speedclassification and the uplift rigidity of the shingle. The ca

17、lcu-lated uplift force (FT) for each of the possible classifications iscompared to the measured uplift resistance (RT) of the sealedshingle to establish the wind resistance classification of theshingle.5.2 The method involves three steps:5.2.1 Uplift coefficients are determined by measuring pres-sur

18、e differences above and below the shingle as air moves overthe surface of a deck of sealed shingles under controlledconditions.5.2.2 The uplift forces acting on the shingle are calculated,using the wind uplift coefficients, shingle sealant configurationand a specific basic wind speed.5.2.3 Shingle u

19、plift resistance to that specific basic windspeed is determined by comparing the calculated uplift forcesacting on the sealant to the uplift resistances measured withTest Method D 6381. Uplift resistances from Procedure A andProcedure B are applied against the uplift forces in a mannerdetailed in th

20、e calculation section.5.3 This test method is applicable to any asphalt shinglesurfaced with mineral granules where the shingle above isaffixed to the surface of the shingle below with a sealant(factory or field applied) applied in a pattern aligned parallel tothe windward edge of the shingle.NOTE 1

21、It is not prohibited to use this test method for researchpurposes using variations in the number and placement of fasteners. If thisis done, the report shall include details of the number and placement offasteners.6. Significance and Use6.1 The wind resistance of sealed asphalt shingles is directlyr

22、elated to the ability of the sealed shingle to resist the force ofthe wind acting to lift the shingle from the shingle below. Thistest method employs the measured resistance of the shingle tomechanical uplift after sealing under defined conditions, in acalculation which determines whether this resis

23、tance exceedsthe calculated force induced by wind passing over the surfaceof the shingle. Natural wind conditions differ with respect tointensity, duration, and turbulence; while these conditions wereconsidered, and safety factors introduced, extreme naturalvariations are beyond the means of this te

24、st method to simulate.6.2 Many factors influence the sealing characteristics ofshingles in the field; for example, temperature, time, roof slope,contamination by dirt and debris, and fasteners that aremisaligned or under driven and interfere with sealing. It isbeyond the scope of this test method to

25、 address all of theseinfluences. The classification determined in this test method isbased on the mechanical uplift resistance determined whenrepresentative samples of shingles are sealed under definedconditions before testing.6.3 The calculations that support the Classes in 4.1 useseveral standard

26、building environment factors. These includethe 3-s wind gust exposure from ASCE-7, installation onCategory I or II buildings for all slopes, ground roughness B orC, and installation on buildings 60 ft tall or less.NOTE 2The assumptions used in the calculations for the classes in 4.1cover the require

27、ments for the majority of the asphalt shingle roofsinstalled. If environmental factors are outside those used in the calcula-tions for these classes, such as ground roughness D, building heightsgreater than 60 ft tall, building use categories III or IV and other exposuresas defined byASCE-7, other c

28、alculations are required. Consult the shinglemanufacturer for the specific shingles DCp, EI, L, L1, and L2 valuesneeded to complete these calculations.6.4 The test to determine uplift coefficients is conductedwith a wind velocity of 15.6 6 1.3 m/s (35 6 3 mph). Researchdata obtained during the devel

29、opment of this test procedure, aswell as standard wind modeling practices, provides for dataextrapolation to other wind speeds. In order to simulate theraised shingle edge that is inherent behavior under high windexposure, shims are inserted under the windward edge of theshingle as appropriate based

30、 on wind speed and uplift rigidityof the shingle being investigated. This test method provides ameans of measuring shingle uplift rigidity which is used todetermine the correct shim thickness. Additionally, this testmethod allows for the use of a default value for uplift rigidity(EI) of 7175 N-mm2(2

31、.5 lbf-in.2), if a rigidity measurement isnot made. This default value is conservative since the lowest EImeasured in the development of this program was 14 350N-mm2(5.0 lbf-in.2).NOTE 3 The entire field of wind engineering is based on use ofsmall-scale models in wind tunnels using wind speeds much

32、lower thanthe full-scale values. Building Codes permit testing of this type to replacethe analytical provisions of the Building Code through the provisions ofASCE 7. (See Appendix X1 for details and references.)7. Apparatus7.1 The apparatus described in Test Method D 6381, Proce-dure A, modified as

33、described below, is used to determine theuplift rigidity of the shingle being evaluated.7.2 The apparatus described in Test Method D 3161, modi-fied as described below, is used to determine the wind upliftcoefficient of the shingle being evaluated.7.3 Air flow instrumentation capable of continuously

34、 mea-suring and recording time-averaged velocity accurate to 60.45m/s (61.0 mph) and a method of traversing the measurementdevice above the test deck is used to measure velocities of theair flow.7.4 Air pressure instrumentation capable of continuouslymeasuring and electronically recording the time-a

35、veraged pres-sures of 2.5 to 311 Pa (0.01 to 1.25 in. of water) is use tomeasure the pressure above and below the shingle on the testdeck.7.5 Shims of thickness 1 6 0.05 mm (0.04 6 0.002 in.) anda maximum length and width of 5.1 by 5.1 mm (0.2 by 0.2 in.)are used to lift the windward edge of the shi

36、ngle during part ofthe wind uplift coefficient measurements (see 11.2.5). Shims ofother thicknesses, but a minimum of 0.1 mm (0.004 in.), and aD 7158 08b2maximum width and length of 5.1 by 5.1 mm (0.2 by 0.2 in.),are used as required, alone or in combination, to lift thewindward edge to the height c

37、alculated from the shingledeflection (see 11.2.13).NOTE 4The modifications to the Test Method D 3161 apparatus toinduce turbulence, the air flow and pressure measurement instrumentation,and the shims employed, are consistent with the procedure developed forTest Method ANSI/UL 2390 for shingle wind r

38、esistance testing.7.6 The apparatus described in Test Method D 6381 is usedto determine the mechanical uplift resistance of the shinglebeing evaluated. The selection of Procedure A or B in TestMethod D 6381 is dictated by the magnitude of the forces infront of (FF) and behind (FB) the sealant as cal

39、culated using themeasured wind uplift coefficient and the geometry of theshingle being evaluated (see 12.2).8. Preparation of Apparatus8.1 Shingle Uplift RigidityUse a metal shim 90 by 90 mm(3.5 by 3.5 in.) with thickness equal to or greater than that ofthe jaw of the pendant clamp in Test Method D

40、6381 to allowinsertion of the jaw of the pendant clamp without deflecting thespecimen before the test begins. Insert the shim all the way tothe base (“stop”) of the specimen clamp on the lower fixture.The second specimen clamp on the lower fixture is not used inthis test. The same “stop” shall be us

41、ed each time for both theshim and the specimens. See Fig. 1.8.2 Shingle Wind Uplift Coeffcient:8.2.1 Install devices to induce the desired turbulent air flowfrom the fan-induced wind apparatus used in Test MethodD 3161 as follows:8.2.1.1 Install a turbulence grid as shown in Fig. 2 in the airflow ex

42、it orifice of the fan-induced wind apparatus.8.2.1.2 Install a bridge panel with roughness strips betweenthe air flow orifice of the apparatus used in Test MethodD 3161 and the test deck as shown in Fig. 3.8.2.1.3 The overall arrangement of a modified Test MethodD 3161 apparatus is shown schematical

43、ly in Fig. 4.8.2.1.4 Test decks shall be constructed in accordance withTest Method D 3161, with the shingles applied in accordancewith the manufacturers instructions. The test deck sits on anadjustable stand, and is fixed at 0.91 m (36 in.) from the airflow orifice. A rigid bridge with roughness str

44、ips (as shown inFig. 4) is placed between the orifice and the test deck, and thereis no step between the bridge and the deck. The bridge and thedeck are both set at a slope of 1.6 6 0.5 degrees. A minimumof 4 ft (1.2 m) of clear space shall be maintained at the sidesand back of the test panel deck.8

45、.2.1.5 The measurement area, as shown in Fig. 5, is an areaof 305 by 178 mm (12 by 7 in.) with the long directionperpendicular to the airflow. The area is centered 635 mm (25in.) from either side of the 1.27 m (50 in.) dimension of the testdeck. The front edge of the measurement area shall be the fi

46、rstFIG. 1 Apparatus Used in Test Method D 6381 Modified for this Test Method Using a Metal Shim and Using Only One Specimen ClampD 7158 08b3course of shingles located within the measurement area with itswindward edge at least 356 mm (14 in.) from the edge of thetest deck closest to the air source.8.

47、2.1.6 Calibrate the air flow as follows: A vertical velocityprofile of time-averaged (mean) velocity shall be measured atthe center of the measurement area at 12.7 and 25.4 mm (0.5and 1.0 in.) above the surface, and at every 25.4 mm (1.0 in.)above the previous measurement to a height of 152 mm (6 in

48、.).The velocity will increase with distance from the surface, reacha peak value, and begin to decrease with additional height.Record the maximum velocity and its height. This maximumvelocity shall be at least 15.6 m/s (35 mph).Ahorizontal profileof time-averaged velocities across the measurement are

49、a shallbe made at the height of maximum velocity (see Note 5)inthevertical profile, and progressing in 25.4 mm (1.0 in.) steps inboth horizontal directions perpendicular to the airflow withinNOTE1 in. = 25.4 mm.FIG. 2 Turbulence Grid Installed at Air Flow Exit Orifice of Apparatus Used in Test Method D 3161NOTE1 in. = 25.4 mm.FIG. 3 Bridge Panel with Roughness Strips Installed Between Air Flow Exit Orifice of Apparatus Used in Test Method D 3161 and TestDeckFIG. 4 Overall Schematic of Test Arrangement for Determination of Wind Uplift CoefficientD 7158 08b4the b

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1