ImageVerifierCode 换一换
格式:PDF , 页数:9 ,大小:134.09KB ,
资源ID:524800      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-524800.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM D7202-2014e1 5927 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection《使用提取和光学荧光检测法测定工作场所中铍的标准试验方法》.pdf)为本站会员(twoload295)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM D7202-2014e1 5927 Standard Test Method for Determination of Beryllium in the Workplace by Extraction and Optical Fluorescence Detection《使用提取和光学荧光检测法测定工作场所中铍的标准试验方法》.pdf

1、Designation: D7202 141Standard Test Method forDetermination of Beryllium in the Workplace by Extractionand Optical Fluorescence Detection1This standard is issued under the fixed designation D7202; the number immediately following the designation indicates the year oforiginal adoption or, in the case

2、 of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1NOTEResearch report information was added editorially in June 2014.1. Scope1.1 This test method is inte

3、nded for use in the determinationof beryllium by sampling workplace air and surface dust.1.2 This test method assumes that air and surface samplesare collected using appropriate and applicable ASTM Interna-tional standard practices for sampling of workplace air andsurface dust. These samples are typ

4、ically collected using airfilter sampling, vacuum sampling or wiping techniques. SeeGuide E1370 for guidance on air sampling strategies, andGuide D7659 for guidance on selection of surface samplingtechniques.1.3 Determination of beryllium in soil is not within thescope of this test method. See Test

5、Method D7458 fordetermination of beryllium in soil samples.1.4 This test method includes a procedure for extraction(dissolution) of beryllium in weakly acidic medium (pH of 1 %aqueous ammonium bifluoride is 4.8), followed by fieldanalysis of aliquots of the extract solution using a beryllium-specifi

6、c-optically fluorescent dye.1.5 The procedure is suitable for on-site use in the field foroccupational and environmental hygiene monitoring purposes.The method is also applicable for use in fixed-site laboratories.1.6 No detailed operating instructions are provided becauseof differences among variou

7、s makes and models of suitablefluorometric instruments. Instead, the analyst shall follow theinstructions provided by the manufacturer of the particularinstrument. This test method does not address comparativeaccuracy of different devices or the precision between instru-ments of the same make and mo

8、del.1.7 The values stated in SI units are to be regarded asstandard. No other units of measurement are included in thisstandard.1.8 This test method contains notes that are explanatory andnot part of mandatory requirements of the standard.1.9 This standard does not purport to address all of thesafet

9、y concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2D1193 Specification for Reagent W

10、aterD1356 Terminology Relating to Sampling and Analysis ofAtmospheresD4840 Guide for Sample Chain-of-Custody ProceduresD5337 Practice for Flow Rate Adjustment of Personal Sam-pling PumpsD6966 Practice for Collection of Settled Dust SamplesUsing Wipe Sampling Methods for Subsequent Determi-nation of

11、MetalsD7035 Test Method for Determination of Metals and Met-alloids in Airborne Particulate Matter by InductivelyCoupled Plasma Atomic Emission Spectrometry (ICP-AES)D7144 Practice for Collection of Surface Dust by Micro-vacuum Sampling for Subsequent Metals DeterminationD7296 Practice for Collectio

12、n of Settled Dust SamplesUsing Dry Wipe Sampling Methods for Subsequent De-termination of Beryllium and CompoundsD7458 Test Method for Determination of Beryllium in Soil,Rock, Sediment, and Fly Ash Using Ammonium Bifluo-ride Extraction and Fluorescence DetectionD7659 Guide for Strategies for Surface

13、 Sampling of Metalsand Metalloids for Worker ProtectionD7707 Specification for Wipe Sampling Materials for Beryl-lium in Surface Dust1This test method is under the jurisdiction of ASTM Committee D22 on AirQuality and is the direct responsibility of Subcommittee D22.04 on Workplace AirQuality.Current

14、 edition approved April 1, 2014. Published May 2014. Originallyapproved in 2005. Last previous edition approved in 2011 as D7202 11. DOI:10.1520/D7202-14.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMS

15、tandards volume information, refer to the standards Document Summary page onthe ASTM website.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States1E177 Practice for Use of the Terms Precision and Bias inASTM Test MethodsE691 Practice for Co

16、nducting an Interlaboratory Study toDetermine the Precision of a Test MethodE882 Guide for Accountability and Quality Control in theChemical Analysis LaboratoryE1370 Guide for Air Sampling Strategies for Worker andWorkplace ProtectionE1792 Specification for Wipe Sampling Materials for Leadin Surface

17、 Dust3. Terminology3.1 DefinitionsFor definitions of terms not appearing here,see Terminology D1356.3.2 Definitions of Terms Specific to This Standard:3.2.1 wipe, na disposable towelette that is moistened witha wetting agent such as water. E1792; D69663.2.1.1 DiscussionThese towelettes are used for

18、collectingsamples of dust, potentially containing beryllium, from sur-faces.3.2.2 wipe sample, nsample collected by wiping a repre-sentative surface of known area, as determined by PracticeD6966, or equivalent method, with an acceptable wipe materialas defined in Specification D7707.4. Summary of Te

19、st Method4.1 Particles potentially containing beryllium from work-place air or surfaces, or both, are collected in the field usingprocedures described in ASTM International standards. Toextract (or dissolve) beryllium in the collected samples, themedia in or on which the samples are collected (that

20、is, airsample, vacuum sample or wipe) are treated using an acidicextraction solution containing dilute ammonium bifluoride,NH4HF2(1).3The presence of active fluoride ions (HF bydissociation of ammonium bifluoride in acidic medium) en-ables dissolution of refractory materials such as “high-fired”bery

21、llium oxide. The extraction solution produced from eachsample is then filtered and an aliquot of this extract is added toa pH-adjusted detection solution which contains a beryllium-specific optical fluorescence reagent (1, 2). The fluorescenceexhibited by this final solution is then measured on a ca

22、libratedfluorometer to quantify the amount of beryllium in the sample(3).5. Significance and Use5.1 Exposure to beryllium can cause a potentially fataldisease, and occupational exposure limits for beryllium in airand on surfaces have been established to reduce exposure risksto potentially affected w

23、orkers (4, 5). Sampling and analyticalmethods for beryllium are needed in order to meet thechallenges relating to exposure assessment and risk reduction.Sampling and analysis methods, such as the procedure de-scribed in this test method, are desired in order to facilitateon-site and fixed-site labor

24、atory measurement of trace beryl-lium. Beryllium analysis results can then be used as a basis forexposure assessment and protection of human health.6. Interferences6.1 This test method is highly specific for beryllium. Othersolvated metal ions are either bound by ethylenediaminetet-raacetic acid (ED

25、TA) in the detection solution, or they precipi-tate out due to the high alkalinity of the detection solution (1).In case the sample is suspected of having fluorescent organiccontaminants that are suspected to be present, then theirpresence can be checked and removed (6).NOTE 1If the samples are susp

26、ected of having a contaminant thatfluoresces and has excitation and emission spectra that overlap with thatof the signal produced by the fluorescent dye bound to beryllium, then thiscontaminant needs to be removed. The presence of such a contaminant canbe verified by subjecting the filtered sample t

27、o fluorescence excitationafter the extraction step (without adding the fluorescent dye). If afluorescence signal is detected, then that signal is ascribed to the presenceof a fluorescent contaminant. To remove the contaminant, high-purityactivated charcoal is added to the beryllium extraction soluti

28、on and theextraction procedure is carried out at elevated temperature (80 to 90C forat least 45 minutes). If the beryllium extraction procedure has alreadybeen performed, then after the addition of activated charcoal, theextraction process is repeated at the elevated temperature. The solution isfilt

29、ered to remove the activated charcoal before making the measurementsolution. The measurement solution is made by the addition of thefluorescent dye solution to an aliquot of the extraction solution. Details ofthis process have been published (6).6.2 If iron is present in high excess in the sample (t

30、ypicallymore than 20 M), the resulting measurement solution mayappear golden-yellow. In this case the solution should be leftfor an hour or more for the iron to precipitate. The solutionshould then be re-filtered using the same procedure as forfiltering the dissolution solution (after the dissolutio

31、n step),prior to fluorescence measurement.7. Apparatus7.1 Sampling Equipment:7.1.1 Air SamplingUse air samplers and filters for collect-ing personal air samples as described in Test Method D7035.7.1.2 Wipe SamplingUse wipe sampling apparatus forcollecting surface dust samples as described in Practic

32、e D6966(or Practice D7296 in special cases), using wipes meeting thespecifications described in Specification D7707.7.1.3 Vacuum SamplingIf wipe sampling is not advisablefor surface sample collection, use vacuum sampling apparatusfor collecting surface dust samples as described in PracticeD7144.7.2

33、Instrumentation:7.2.1 Ultraviolet/Visible (UV/Vis) Fluorometer, with irradi-ance excitation lamp (excitation = 380 nm) and time-integrating visible detector (400700 nm, max 475 nm).7.2.2 Mechanical Agitator or Heating Source, shaker, rota-tor or ultrasonic bath; or heat block, oven or heating bath.N

34、OTE 2For routine samples, a shaker, rotator, or ultrasonic bath isadequate. To achieve higher recoveries from beryllium oxide (especially“high-fired” BeO), a heat block, oven or heating bath is required.7.3 Laboratory Supplies:7.3.1 Centrifuge tubes, plastic, 15-mL (plus 50-mL, ifnecessary).3The bol

35、dface numbers in parentheses refer to a list of references at the end ofthis standard.D7202 14127.3.2 Syringe filters, 0.2 to 0.45-m nylon, polyethersulfoneor hydrophilic polypropylene, 13- or 25-mm diameter, inplastic housings.7.3.3 Syringes, plastic, 5-mL or 10-mL.7.3.4 Pipetters, mechanical, of a

36、ssorted sizes as needed.7.3.5 Pipet tips, plastic, disposable, of assorted sizes asneeded.7.3.6 Fluorescence cuvettes, disposable, low fluorescence,10-mm path length, transparent to UV/Vis radiation.7.3.7 Labware, plastic (for example, beakers, flasks, gradu-ated cylinders, etc.), of assorted sizes

37、as needed.7.3.8 Forceps, plastic or plastic-coated.7.3.9 Personal protective wear, for example, respirators,masks, gloves, lab coats, safety eyewear, etc., as needed.7.3.10 Thermometer, to at least 100C.7.3.11 Other general laboratory apparatus, as needed.7.4 Reagents:7.4.1 WaterUnless otherwise ind

38、icated, references to wa-ter shall be understood to mean reagent as defined by Type I ofSpecification D1193 (ASTM Type I Water: minimum resis-tance of 18 M-cm or equivalent)7.4.2 Calibration Stock Solution1000 ppm beryllium indilute nitric acid or equivalent.7.4.3 Ethylenediaminetetraacetic acid (ED

39、TA) disodiumsalt dihydrate.7.4.4 L-lysine monohydrochloride.7.4.5 10-hydroxybenzohquinoline-7-sulfonate (10-HBQS).7.4.6 Sodium hydroxide.7.4.7 Extraction (or Dissolution) Solution1 % ammoniumbifluoride (NH4HF2) solution (aqueous) for dissolution ofberyllium in collected particulate matter. (WarningA

40、mmonium bifluoride will etch glass, so it is essential that allNH4HF2solutions be contained in plastic labware.)7.4.8 Detection Solution63.4 M 10-hydroxybenzohquinoline-7-sulfonate (10-HBQS) / 2.5 mMethylenediaminetetraacetic acid (EDTA)/50.8 mM lysinemonohydrochloride (pH adjusted to 12.8 with NaOH

41、): Theaqueous detection reagent is prepared by the addition of 12.5mL of 10.7 mM ethylenediaminetetraacetic acid (EDTA)disodium salt dihydrate and 25 mL of 107 mM L-lysinemonohydrochloride to 3 mL of 1.1 mM 10-hydroxybenzohquinoline-7-sulfonate (10-HBQS). The pH isadjusted to 12.85 with addition of

42、sodium hydroxide and wateradded to a total of 50 mL (1-3).NOTE 3For on-site analysis, it is recommended that the extraction anddetection solutions be prepared in a fixed-site laboratory or other suchcontrolled environment prior to transport to the field.8. Procedure8.1 Sampling:8.1.1 Air SamplesColl

43、ect workplace air samples for be-ryllium in accordance with Test Method D7035, using personalsampling pumps calibrated in accordance with Practice D5337.8.1.2 Wipe SamplesCollect surface wipe samples for be-ryllium in accordance with Practices D6966 and D7296 usingwipe materials that comply with Spe

44、cification D7707.NOTE 4Practice D7296 should only be used when wetted wipesampling is not physically feasible (for example, if the surface to be wipedwould be compromised by use of wetted wipes). Otherwise, PracticeD6966 should be used.8.1.3 Vacuum SamplesIf wipe sampling is inadvisable forsurface d

45、ust sampling, collect surface vacuum samples forberyllium in accordance with Practice D7144.8.1.4 Sample TransportIf applicable (that is, if samplesare transported to a different location prior to sample prepara-tion and analysis), follow sampling chain-of-custody proce-dures to document sample trac

46、eability. Ensure that the docu-mentation that accompanies the samples is suitable for a chainof custody to be established in accordance with Guide D4840.8.2 Sample PreparationWear appropriate personal protec-tion during sample preparation and analysis activities. Performsample preparation and analys

47、is in a clean area that is wellremoved from any possible beryllium contamination.8.2.1 Extraction of Air Filter or Vacuum Samples:8.2.1.1 Don clean gloves and open the samplers. Use eithertechnique (1)or(2) to perform sample extraction on eachcollected sample:(1) Using forceps, remove the filter fro

48、m the cassette andplace it into 15-mL centrifuge tube. The interior of the cassetteshall be rinsed with extraction solution or wiped with anotherclean filter, and included in the centrifuge tube. For eachvacuum sample, quantitatively transfer all loose dust into thecentrifuge tube before removing th

49、e filter and then rinsing orwiping the inside walls of the sampler.(2) Alternatively, the extraction shall be carried out directlywithin the sampling cassette (see Test Method D7035).8.2.1.2 Pipet 5 mL of 1 % ammonium bifluoride extractionsolution (see 7.4.7) into the centrifuge tubes or cassettescontaining the air filter or vacuum samples.8.2.1.3 Cap the centrifuge tubes or cassettes, and agitate orheat the samples:(1) Activate the shaker, rotator, or ultrasonic bath, andagitate for a minimum of 30 minutes; or(2) Preheat the heat block, ov

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1