ImageVerifierCode 换一换
格式:PDF , 页数:7 ,大小:128.41KB ,
资源ID:525285      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-525285.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM D7366-2008 374 Standard Practice for Estimation of Measurement Uncertainty for Data from Regression-based Methods《基于回归方法从预测不确定度获得数据的标准指南》.pdf)为本站会员(王申宇)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM D7366-2008 374 Standard Practice for Estimation of Measurement Uncertainty for Data from Regression-based Methods《基于回归方法从预测不确定度获得数据的标准指南》.pdf

1、Designation: D 7366 08Standard Practice forEstimation of Measurement Uncertainty for Data fromRegression-based Methods1This standard is issued under the fixed designation D 7366; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the

2、year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This practice establishes a standard for computing themeasurement uncertainty for applicable test methods in C

3、om-mittee D19 on Water. The practice does not provide a single-point estimate for the entire working range, but rather relatesthe uncertainty to concentration. The statistical technique ofregression is employed during data analysis.1.2 Applicable test methods are those whose results comefrom regress

4、ion-based methods and whose data are intra-laboratory (not inter-laboratory data, such as result fromround-robin studies). For each analysis conducted using such amethod, it is assumed that a fixed, reproducible amount ofsample is introduced.1.3 Calculation of the measurement uncertainty involves th

5、eanalysis of data collected to help characterize the analyticalmethod over an appropriate concentration range. Examplesources of data include: 1) calibration studies (which may ormay not be conducted in pure solvent), 2) recovery studies(which typically are conducted in matrix and include allsample-

6、preparation steps), and 3) collections of data obtainedas part of the methods ongoing Quality Control program. Useof multiple instruments, multiple operators, or both, andfield-sampling protocols may or may not be reflected in thedata.1.4 In any designed study whose data are to be used tocalculate m

7、ethod uncertainty, the user should think carefullyabout what the study is trying to accomplish and muchvariation should be incorporated into the study. General guid-ance on designing studies (for example, calibration, recovery)is given in Appendix A. Detailed guidelines on sources ofvariation are ou

8、tside the scope of this practice, but generalpoints to consider are included in Appendix B, which is notintended to be exhaustive. With any study, the user must thinkcarefully about the factors involved with conducting theanalysis, and must realize that the computed measurementuncertainty will refle

9、ct the quality of the input data.1.5 Associated with the measurement uncertainty is a user-chosen level of statistical confidence.1.6 At any concentration in the working range, the measure-ment uncertainty is plus-or-minus the half-width of the predic-tion interval associated with the regression lin

10、e.1.7 It is assumed that the user has access to a statisticalsoftware package for performing regression. A statisticianshould be consulted if assistance is needed in selecting such aprogram.1.8 A statistician also should be consulted if data transfor-mations are being considered.1.9 This standard do

11、es not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Sta

12、ndards:2D 1129 Terminology Relating to Water3. Terminology3.1 Definitions of Terms Specific to This Standard:3.1.1 confidence levelthe probability that the predictioninterval from a regression estimate will encompass the truevalue of the amount or concentration of the analyte in asubsequent measurem

13、ent. Typical choices for the confidencelevel are 99 % and 95 %.3.1.2 fitting techniquea method for estimating the param-eters of a mathematical model. For example, ordinary leastsquares is a fitting technique that may be used to estimate theparameters a0,a1,a2, of the polynomial modely=a0+a1x+a2x2+

14、, based on observed x,y pairs. Weighted leastsquares is also a fitting technique.3.1.3 lack-of-fit (LOF) testa statistical technique whenreplicate data are available; computes the significance ofresidual means to replicate y variability, to indicate whetherdeviations from model predictions are reaso

15、nably accountedfor by random variability, thus indicating that the model isadequate; at each concentration, compares the amount of1This practice is under the jurisdiction of ASTM Committee D19 on Water andis the direct responsibility of Subcommittee D19.02 on Quality Systems, Specifi-cation, and Sta

16、tistics.Current edition approved Aug. 1, 2008. Published September 2008.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe AS

17、TM website.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.residual variation from model prediction with the amount ofresidual variation from the observed mean.3.1.4 least squaresfitting technique that minimizes thesum of squared res

18、iduals between observed y values and thosepredicted by the model.3.1.5 modelmathematical expression (for example,straight line, quadratic) relating y (directly measured value) tox (concentration or amount of analyte).3.1.6 ordinary least squares (OLS)least squares, where alldata points are given equ

19、al weight.3.1.7 prediction intervala pair of prediction limits (an“upper” and “lower”) used to bracket the “next” observation ata certain level of confidence.3.1.8 p-valuethe statistical significance of a test; theprobability value associated with a statistical test, representingthe likelihood that

20、a test statistic would assume or exceed acertain value purely by chance, assuming the null hypothesis istrue (a low p-value indicates statistical significance at a level ofconfidence equal to 1.0 minus the p-value).3.1.9 regressionan analysis technique for fitting a modelto data; often used as a syn

21、onym for OLS.3.1.10 residualerror in the fit between observed andmodeled concentration; response minus fit.3.1.11 root mean square error (RMSE)an estimate of themeasurement standard deviation (that is, inherent variation inthe measurement system).3.1.12 significance levelthe likelihood that a measur

22、ed orobserved result came about due to simple random behavior.3.1.13 uncertainty (of a measurement)the lack of exact-ness in measurement (for example, due to sampling error,measurement variation, and model inexactness); a statisticalinterval within which the measurement error is believed tooccur, at

23、 some level of confidence.3.1.14 weightcoefficient assigned to observations in orderto manipulate their relative influence in subsequent calcula-tions. For example, in weighted least squares, noisy observa-tions are weighted downwards, while precise data are weightedupwards.3.1.15 weighted least squ

24、ares (WLS)least squares, wheredata points are weighted inversely proportional to their vari-ance (“noisiness”).4. Summary of Practice4.1 Key points of the statistical protocol for measurementuncertainty are:4.1.1 Within the working range of the methods data set, theestimate of the method uncertainty

25、 at any given concentrationis calculated to be plus-or-minus the half-width of the predic-tion interval.4.1.2 The total number of data points in any designed studyshould be kept high. Blanks may or may not be included,depending on the data-quality objectives of the test method.4.1.3 In applying regr

26、ession to any applicable data set, theproper fitting technique (for example, ordinary least squares(OLS) or weighted least squares (WLS) must be determined(for fitting the proposed model to the data).4.1.4 The residual pattern and the lack-of-fit test are used toevaluate the adequacy of the chosen m

27、odel.4.1.5 The magnitude of the half-width of the predictioninterval must be evaluated, remembering that accepting orrejecting the amount of uncertainty is a judgment call, not astatistical decision.5. Significance and Use5.1 Appropriate application of this practice should result inan estimate of th

28、e test-methods uncertainty (at any concentra-tion within the working range), which can be compared withdata-quality objectives to see if the uncertainty is acceptable.5.2 With data sets that compare recovered concentrationwith true concentration, the resulting regression plot allows thecorrection of

29、 the recovery data to true values. Reporting ofsuch corrections is at the discretion of the user.5.3 This practice should be used to estimate the measure-ment uncertainty for any application of a test method wheremeasurement uncertainty is important to data use.6. Procedure6.1 Introduction6.1.1 For

30、purposes of this practice, only regression-basedmethods are applicable. An example of a module that is notregression-based is a balance. If an object is placed on abalance, the readout is in the desired units; that is, in units ofmass. No user intervention is required to get to the neededresult. How

31、ever, for an instrument such as a chromatograph ora spectrometer, the raw data (for example, peak area orabsorbance) must be transformed into meaningful units, typi-cally concentration. Regression is at the core of this transfor-mation process.6.1.2 One additional distinction will be made regarding

32、theapplicability of this protocol. This practice will deal only withintralaboratory data. In other words, the variability introducedby collecting results from more than one lab is not beingconsidered. The examples that are shown here are for onemethod with one operator. If the user wishes, additiona

33、loperators may be included in the design, to capture multiple-operator variability.6.1.3 A brief example will help illustrate the importance ofestimating measurement uncertainty. A sample is to be ana-lyzed to determine if it is under the upper specification limit of5 (the actual units of concentrat

34、ion do not matter). The final testresult is 4.5. The question then is whether the sample shouldpass or fail. Clearly, 4.5 is less than 5. If the numbers aretreated as being absolute, then the sample will pass. However,such a judgment call ignores the variability that always existswith a measurement.

35、 The width of any measurements uncer-tainty interval depends not only on the noisiness of the data,but also on the confidence level the user wishes to assume. Thislatter consideration is not a statistical decision, but a reasoneddecision that must be based on the needs of the customer, theintended u

36、se of the data, or both. Once the confidence level hasbeen chosen, the interval can be calculated from the data. Inthis example, if the uncertainty is determined to be 61.0, thenthere is serious doubt as to whether the sample passes or not,since the true value could be anywhere between 3.5 and 5.5.O

37、n the other hand, if the uncertainty is only 60.1, then thesample could be passed with a high level of comfort. Only bymaking a sound evaluation of the uncertainty can the userD7366082determine how to apply the sample estimate he or she hasobtained. The following protocol is designed to answer ques-

38、tions such as: 4.5 6 ?6.2 Regression Diagnostics for Recovery Data6.2.1 Analysts who routinely use chromatographs and spec-trometers are familiar with the basics of the regression process.The final results are: 1) a plot that visually relates the responses(on the y-axis) to the true concentrations (

39、on the x-axis) and 2)an equation that mathematically relates the two variables.6.2.2 Underlying these results are two basic choices: 1) amodel, such as a straight line or some sort of curved line, and2) a fitting technique, which is a version of least squares. Themodeling choices are generally well

40、known to most analysts,but the fitting-technique choices are typically less well under-stood. The two most common forms of least-squares fitting arediscussed next.6.2.2.1 Ordinary least squares (OLS) assumes that thevariance of the responses does not trend with concentration. Ifthe variance does tre

41、nd with concentration, then weighted leastsquares (WLS) is needed. In WLS, data are weighted accordingto how noisy they are. Values that have relatively low uncer-tainty are considered to be more reliable and are subsequentlyafforded higher weights (and therefore more influence on theregression line

42、) than are the more uncertain values.6.2.2.2 Several formulas have been used for calculating theweights. The simplest is 1/x (where x = true concentration),followed by 1/x2. At each true concentration, the reciprocalsquare of the actual standard deviation has also been used.However, the preferred fo

43、rmula comes from modeling thestandard deviation. In other words, the actual standard-deviation values are plotted versus true concentration; anappropriate model is then fitted to the data. The reciprocalsquare of the equation for the line is then used to calculate theweights. The simplest model is a

44、 straight line, but more precisemodeling should be done if the situation requires it. (Inpractice, it is best to normalize the weight formula by dividingby the sum of all the reciprocal squares. This process assuresthat the root mean square error is correct.)6.2.2.3 In sum, two choices, which are in

45、dependent of eachother, must be made in performing regression. These twochoices are a model and a fitting technique. In practice, theoptions for the model are typically a straight line or a quadratic,while the customary choices for the fitting technique areordinary least squares and weighted least s

46、quares.6.2.2.4 However, a straight line is not automatically associ-ated with OLS, nor is a quadratic automatically paired withWLS. The fitting technique depends solely on the behavior ofthe response standard deviations (that is, do they trend withconcentrations). The model choice is not related to

47、thesestandard deviations, but depends primarily on whether the datapoints exhibit some type of curvature.6.2.3 Once an appropriate model and fitting technique havebeen chosen, the regression line and plot can be determined.One other very important feature can also be calculated andgraphed. That feat

48、ure is the prediction interval, which is an“envelope” around the line itself and which reports theuncertainty (at the chosen confidence level) in a future mea-surement predicted from the line. An example is given in Fig.1. The solid red line is the regression line; the dashed red linesform the predi

49、ction interval.6.2.4 While the concept of a model is familiar to mostanalysts, the statistically sound process for selecting an ad-equate model typically is not.Aseries of regression diagnosticswill guide the user. The basic steps are as follows, and can becarried out with most statistical software packages that arecommercially available:(1) Plot y vs. x(2) Determine the behavior of ys standard deviation(3) Fit proposed model(4) Examine residuals(5) Conduct lack-of-fit (LOF) test(6) Evaluate prediction intervalStep 1 generates a scatterplot. This graph is help

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1