1、Designation: D7430 09Standard Practice forMechanical Sampling of Coal1This standard is issued under the fixed designation D7430; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A number in parentheses ind
2、icates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.INTRODUCTIONAnalysis data obtained from coal samples are used in establishing price, controlling mine andcleaning plant operations, allocating production costs, and determi
3、ning plant or component efficiency.The task of obtaining a sample of reasonable weight to represent an entire lot presents a number ofproblems and emphasizes the necessity for using standard sampling procedures.Coal is one of the most difficult of materials to sample, varying in composition from non
4、combus-tible particles to those which can be burned completely, with all gradations in between. The task isfurther complicated by the use of the analytical results, the sampling equipment available, the quantityto be represented by the sample, and the degree of precision required.This practice gives
5、 the overall requirements for the collection and within-system preparation of coalsamples through the use of mechanical sampling systems utilizing falling stream, cross belt and augerdesigns. This practice also gives the overall requirements for the bias testing and quality managementof mechanical c
6、oal sampling systems. The wide varieties of coal-handling facilities preclude thepublication of detailed procedures for every sampling situation. The proper collection of the sampleinvolves an understanding and consideration of the physical character of the coal, the number andweight of increments,
7、and the overall precision required.1. Scope1.1 This practice is divided into 4 parts. These 4 partsrepresent the previous standards D7256/D7256M, D4916,D4702, and D6518. These 4 standards are the 4 that govern themechanical sampling of coal and have been combined into onedocument for the ease of ref
8、erence of the users of thesestandards.Part A1.2 Part AMechanical Collection and Within-SystemPreparation of a Gross Sample of Coal from MovingStreamsCovers procedures for the mechanical collection of asample under Classification I-B-1 and I-B-2 (Practice D2234/D2234M) and the within-system preparati
9、on (reduction anddivision) of gross samples utilizing various components of themechanical sampling system.1.2.1 Part A describes mechanical sampling procedures forcoals (1) by size and condition of preparation (for example,mechanically cleaned coal or raw coal), and (2) by samplingcharacteristics.1.
10、2.2 The values stated in either SI units or inch-pound unitsare to be regarded separately as standard. The values stated ineach system may not be exact equivalents; therefore, eachsystem shall be used independently of the other. Combiningvalues from the two systems may result in non-conformancewith
11、the standard.Part B1.3 Part BMechanical Auger SamplingDescribesprocedures for the collection of an increment, partial sample, orgross sample of material using mechanical augers. Reductionand division of the material by mechanical equipment at theauger is also covered. Further manual or mechanical re
12、ductionor division of the material elsewhere shall be performed inaccordance with Practice D2013.1.3.1 The values stated in SI units are to be regarded asstandard. No other units of measurement are included in thisstandard.1This practice is under the jurisdiction of ASTM Committee D05 on Coal andCok
13、e and is the direct responsibility of Subcommittee D05.23 on Sampling.Current edition approved Nov. 1, 2009. Published December 2009. Originallyapproved in 2008. Last previous edition approved 2008 as D743008a1. DOI:10.1520/D7430-09.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700,
14、West Conshohocken, PA 19428-2959, United States.Part C1.4 Part CQuality Management of Mechanical Coal Sam-pling SystemsIs applicable to the quality management ofcross-belt, falling stream, and auger sampling systems.1.4.1 Spacing of increments pertains to the kind of intervalbetween increments. Inte
15、rvals can be defined in quantitativeterms, such as units of time or mass, or in terms of positionover the lot.1.4.2 Spacing of Increments for Cross-Belt and FallingStream SamplersCross-belt and falling stream type mechani-cal sampling systems take increments based on time, either atfixed time interv
16、als or at random times during a fixed timestrata. Some falling stream samplers can take increments basedon equal mass of coal sampled as determined by scales. Thesections of this practice that pertain to cross-belt and fallingstream samplers describe procedures for only time-basedsampling systems. T
17、his time-based inspection guideline willsatisfy most criteria for mass-based or combination mass-basedand time-based sampling systems. If there are items that are notcovered, the inspector should refer to the manufacturersliterature.1.4.3 Spacing of Increments for Auger SamplingThespacing of increme
18、nts collected by auger sampling systems isdefined in terms of position over the lot.1.4.4 It is essential that the inspector have the documenta-tion listed in Section 2 of this practice when conducting aninspection.1.4.5 The values stated in SI units are to be regarded asstandard. No other units of
19、measurement are included in thisstandard.Part D1.5 Part DBias Testing of a Mechanical Coal SamplingSystemPresents sample collection and statistical evaluationprocedures for testing mechanical sampling systems (includingauger systems), subsystems, and individual system compo-nents for bias. It is the
20、 responsibility of the user of this practiceto select the appropriate procedure for a specific samplingsituation.1.5.1 Part D does not purport to define an absolute bias. Biasdefined by this practice is the difference between the popula-tion mean of the mechanical sampler test results and theaccepte
21、d reference value.1.5.2 The values stated in SI units are to be regarded asstandard. No other units of measurement are included in thisstandard.1.6 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standa
22、rd to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use. For a specifichazard statement, see section 16.1.2. Referenced Documents2.1 ASTM Standards:2D121 Terminology of Coal and CokeD2013 Practice for Preparing Coal Samples for
23、 AnalysisD2234/D2234M Practice for Collection of a Gross Sampleof CoalD4621 Guide for Quality Management in an OrganizationThat Samples or Tests Coal and CokeD4702 Practice for Quality Management of MechanicalCoal Sampling Systems3D4749 Test Method for Performing the Sieve Analysis ofCoal and Design
24、ating Coal SizeD4916 Practice for Mechanical Auger Sampling3D6518 Practice for Bias Testing a Mechanical Coal Sam-pling System3D7256/D7256M Practice for Mechanical Collection andWithin-System Preparation of a Gross Sample of Coalfrom Moving Streams3E105 Practice for Probability Sampling Of Materials
25、E122 Practice for Calculating Sample Size to Estimate,With Specified Precision, the Average for a Characteristicof a Lot or ProcessE177 Practice for Use of the Terms Precision and Bias inASTM Test Methods3. Terminology3.1 DefinitionsDefinitions applicable to this practice arelisted in Terminology D1
26、21.3.2 Definitions of Terms Specific to This Standard:3.2.1 accuracy, n(1) generally, a term used to indicate thereliability of a sample, a measurement, or an observation; (2)specifically, a measure of closeness of agreement between anexperimental result and the true value. An example is theobserved
27、 and true sulfur content of a coal consignment. Thismeasurement is affected by chance errors as well as by bias.3.2.2 activation interval, nfor a falling-stream or cross-belt cutter, the time from the beginning of movement for takingan increment, to the beginning of movement for taking of thenext in
28、crement.3.2.3 auger increment, nthe retained portion of one ex-traction operation of the auger.3.2.4 auger sampler, na mechanical device that extracts acolumnar sample of coal from a railcar, truck, barge orstockpile and any associated sub-system or within-systemcomponents.3.2.5 bias, nthe differenc
29、e between the population meanof the mechanical sampler test results and the acceptedreference value.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Do
30、cument Summary page onthe ASTM website.3Withdrawn. The last approved version of this historical standard is referencedon www.astm.org.D7430 0923.2.6 confidence interval, na numeric interval with alower limit and a higher limit within which the true parametervalue is estimated to fall. The confidence
31、 interval percentageindicates the percentage of time the true value will fall withinthe interval if the procedure is continuously repeated.3.2.7 consignment, na discrete amount of coal, such as ashipment, a car load, a unit train, or a days production. Aconsignment may include more than one lot of c
32、oal and maycorrespond to a specific period of time, such as a samplingperiod or a billing period.3.2.8 correlation, na measure of the linear dependencebetween paired system and reference measurements. Correla-tion frequently is expressed by the correlation coefficient,which can take a value from min
33、us one (perfect negative linearrelationship) to plus one (perfect positive linear relationship).3.2.9 cross-belt sampler, na single sampling machine orcomponent of a mechanical sampling system designed toextract an increment directly from a conveyor belt surface bysweeping a sampling device (cutter)
34、 through the material onthe conveyor.3.2.10 delimitation error, na material error that occurswhen all the elements in a cross section of a coal stream do nothave an equal probability of being intercepted (captured) by thesampler cutter during increment collection.3.2.11 ellipsoidal region, nan area
35、that is formed by planesections of ellipses that are defined by the values selected forthe largest tolerable bias of each coal characteristic used in thebias test. The region will be used to determine if the system isbiased.3.2.12 falling-stream sampler, na single sampling ma-chine or component of a
36、 mechanical sampling system designedto extract an increment from a falling stream of coal at thedischarge end of a conveyor or chute by moving a samplingdevice (cutter) through the falling stream of material.3.2.13 Hotellings T2test, na statistical test that is used toevaluate multivariate data. It
37、is the multivariate equivalent ofthe Students t-test.3.2.14 largest tolerable bias (LTB), nan interval whoseupper and lower bounds represent the limits of an acceptablebias.3.2.15 mechanical sampling system, na single machine orseries of interconnected machines whose purpose is to extractmechanicall
38、y, or process (divide and reduce), or a combinationthereof, a sample of coal.3.2.16 paired data set, nsystem and reference valuesobserved on samples collected and compared from the samebatch of material.3.2.17 precision, na term used to indicate the capability ofa person, an instrument, or a method
39、to obtain reproducibleresults; specifically, a measure of the chance error as expressedby the variance, standard error, or a multiple of the standarderror (see Practice E177).3.2.18 reference sample, na sample used in testing of amechanical sampling system which is comprised of one ormore increments
40、 collected from the test batch or lot of coal bythe stopped belt method as described in Practice D2234/D2234M.3.2.19 reject stream, nthe coal flow within a mechanicalsampling system, which occurs at each stage of division, beforeand after reduction, and is not included in the system sample.3.2.20 sa
41、ve stream, nthe coal flow within a mechanicalsampling system which occurs at each stage of division, beforeand after reduction, and after the final stage of divisionbecomes the system sample.3.2.21 statistical independence, ntwo sample values arestatistically independent if the occurrence of either
42、one in noway affects the probability assigned to the occurrence of theother.3.2.22 surrogate sample, na sample, used in the evalua-tion of a mechanical sampling system, which is comprised ofone or more increments collected from a coal stream within themechanical sampling system in accordance with Pr
43、acticeD2234/D2234M, Conditions “A” or “B.” Such a sample maybe considered acceptable for evaluation of a mechanicalsampling systems components, excluding the primary cutter,when demonstrated to be equivalent to the reference sample.3.2.23 system sample, na sample collected from a testbatch or lot of
44、 coal by the mechanical sampling system beingtested for bias.3.2.24 unbiased sample (representative sample), nasample free of bias.3.2.25 Walsh averages, ngiven a series of observations(differences) x1, x2, . xn, the n (n + 1)/2 pair-wise averagesgiven by:xi 1 xj!/2, 1# i # j # n (1)3.2.25.1 Discuss
45、ionAs an example of Walsh averages,assume one has three observations (differences) designated asx1, x2, and x3. There are then a total of 3(4)/2 = 6 Walshaverages. They are as follows: x1, x2, x3, (x1+x2)/2, (x1+x3)/2, and (x2+x3)/2.3.2.26 Wilcoxon Signed Rank Test, na non-parametricstatistical proc
46、edure for calculating the point estimate andconfidence interval for a sample drawn from a population withsymmetric distribution.3.2.27 within-system preparation, nthe process of grosssample preparation carried out mechanically by sequentialcrushing (reduction) equipment and/or division equipment. It
47、may be carried out by processing increments individually or bybatching increments together and processing them together asa group. In any case, within-system preparation is conducted ina manner to minimize moisture changes and without removingthe gross sample or its increments from the sampling syst
48、em.D7430 093PART A MECHANICAL COLLECTION AND WITHIN-SYSTEM PREPARATION OF A GROSS SAMPLE OFCOAL FROM MOVING STREAMSOld Practice D7256/D7256M4. Summary of Practices4.1 The general-purpose sampling procedures are intendedto provide, in 19 of 20 cases, dry ash results that are within aninterval of 6110
49、 of the average dry ash results that would beobtained in hypothetical repeated sampling.4.2 Special-purpose sampling procedures apply to the sam-pling of coal when other precision limits are required, or whenother constituents are used to specify precision, or for perfor-mance tests.4.3 For coals of known size and condition of preparation, atable (Table 1) is given for the determination of the number andweight of increments required for a gross sample for bothgeneral- and special-purpose sampling.4.4 The only processes of sample d
copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1