ImageVerifierCode 换一换
格式:PDF , 页数:3 ,大小:69.17KB ,
资源ID:526198      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-526198.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM D7727-2011e1 4379 Standard Practice for Calculation of Dose Equivalent Xenon &40 DEX&41 for Radioactive Xenon Fission Products in Reactor Coolant《用于反应堆冷却剂中氙裂变产物计算剂量当量疝 (DEX) 的.pdf)为本站会员(confusegate185)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM D7727-2011e1 4379 Standard Practice for Calculation of Dose Equivalent Xenon &40 DEX&41 for Radioactive Xenon Fission Products in Reactor Coolant《用于反应堆冷却剂中氙裂变产物计算剂量当量疝 (DEX) 的.pdf

1、Designation: D7727 111Standard Practice forCalculation of Dose Equivalent Xenon (DEX) for RadioactiveXenon Fission Products in Reactor Coolant1This standard is issued under the fixed designation D7727; the number immediately following the designation indicates the year oforiginal adoption or, in the

2、 case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1NOTEEditorial corrections made throughout in March 2014.1. Scope1.1 This practice applies to the c

3、alculation of the doseequivalent to133Xe in the reactor coolant of nuclear powerreactors resulting from the radioactivity of all noble gas fissionproducts.1.2 The values stated in inch-pound units are to be regardedas standard. The values given in parentheses are mathematicalconversions to SI units

4、that are provided for information onlyand are not considered standard.1.3 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the

5、 applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2D3648 Practices for the Measurement of RadioactivityD7282 Practice for Set-up, Calibration, and Quality Controlof Instruments Used for Radioactivity Measurements3. Terminology3.1 Definitions:3.1.1 DOSE-

6、EQUIVALENT XE-133 (DEX), nshall be that133Xe concentration (microcuries per gram) that alone wouldproduce the same acute dose to the whole body as thecombined activities of noble-gas nuclides85mKr,85Kr,87Kr,88Kr,131mXe,133mXe,133Xe,135mXe,135Xe, and138Xe actuallypresent.3.1.1.1 DiscussionThis is the

7、 general definition of DEX.Each utility may have adopted modifications to this definitionthrough agreement with the U.S. Nuclear Regulatory Commis-sion (U.S. NRC). The definition as approved for each utility bythe U.S. NRC is the one that should be applied to thecalculations in this practice.4. Summ

8、ary of Practice4.1 A sample of fresh reactor coolant is analyzed for noblegas activities using gamma ray spectrometry. The individualactivity of each detectable radioactive fission gas is divided bya factor that normalizes its dose to that of133Xe. This practiceis to replace the previous practice of

9、 calculating the reactorcoolant calculation when allowed by the plants revisedtechnical specifications. The quantity DEX is acceptable froma radiological dose perspective since it will result in a limitingcondition of operation (LCO) that more closely relates thenon-iodine RCS activity limits to the

10、 dose consequence analy-ses which form their bases.NOTE 1It is incumbent on the licensee to ensure that the doseconversion factors (DCFs) used in the determination of DEX are consis-tent with the DCFs used in the applicable dose consequence analysis usedby the plant in their dose calculation manual

11、for radioactive releases.5. Significance and Use5.1 Each power reactor has a specific DEX value that istheir technical requirement limit. These values may vary fromabout 200 to about 900 Ci/g based upon the height of theirplant vent the location of the site boundary, the calculatedreactor coolant ac

12、tivity for a condition of 1 % fuel defects, andgeneral atmospheric modeling that is ascribed to that particularplant site. Should the DEX measured activity exceed thetechnical requirement limit the plant enters an LCO requiringaction on plant operation by the operators.5.2 The determination of DEX i

13、s performed in a similarmanner to that used in determining DEI, except that thecalculation of DEX is based on the acute dose to the wholebody and considers the noble gases85mKr,85Kr,87Kr,88Kr,131mXe,133mXe,133Xe,135mXe,135Xe, and138Xe which aresignificant in terms of contribution to whole body dose.

14、5.3 It is important to note that only fission gases areincluded in this calculation, and only the ones noted in Table 1.1This practice is under the jurisdiction of ASTM Committee D19 on Water andis the direct responsibility of Subcommittee D19.04 on Methods of RadiochemicalAnalysis.Current edition a

15、pproved May 15, 2011. Published June 2011. DOI: 10.1520/D7727-11E01.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM w

16、ebsite.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States1For example83mKr is not included even though its half life is1.86 hours. The reason for this is that this radionuclide cannotbe easily determined by gamma spectrometry (low energy

17、X-rays at 32 and 9 keV) and its dose consequence is vanish-ingly small compared to the other, more prevalent kryptonradionuclides.5.4 Activity from41Ar,19F,16N, and11C, all of whichpredominantly will be in gaseous forms in the RCS, are notincluded in this calculation.5.5 If a specific noble-gas radi

18、onuclide is not detected, itshould be assumed to be present at the minimum-detectableactivity. The determination of DOSE-EQUIVALENT XE-133shall be performed using effective dose-conversion factors forair submersion listed in Table III.1 of EPA Federal GuidanceReport No. 12 (1),3or the average gamma-

19、disintegrationenergies as provided in ICRP Publication 38 (“RadionuclideTransformations”) or similar source.6. Interferences6.1 The analytical determination of the radionuclides usedfor this calculation is made by gamma ray spectrometry.Commercially available software is generally used to performthe

20、 spectrum analysis and data reduction. However there canbe significant number of interferences from gamma ray emit-ters with multiple gamma ray emissions. The user mustcarefully select the appropriate interference free gamma rayenergy for each radionuclide in order to determine accuratelythe activit

21、y of each radionuclide.6.2 The short half-lives of several of the noble gasradionuclides, the low abundance of their gamma rays, andhigh background activity at their principal gamma ray energies,may require that separation of the gases from the reactorcoolant liquid be performed in order to reliably

22、 determine theirindividual activities.7. Sampling7.1 Separation of gases should be done at the sample pointfrom the reactor coolant system and there should be nochemical treatment process preceding this sample point (that is,prior to letdown demineralization).7.2 Containers used for containing the n

23、oble gases must“gas-tight” to ensure insignificant losses of radionuclidesduring sample counting.7.3 Separation may be achieved by any form of reactorcoolant degassing process (for example, gas expansion into anevacuated container) as long as the sample line remainspressurized until degasification c

24、an occur.8. Calibration and Standardization8.1 Any calibrations and standardizations required in sup-port of this practice should be in accordance with the appli-cable sections of Practices D3648 and D7282 and in accor-dance with the manufacturersspecifications for the gamma rayspectrometry system u

25、sed for analysis.8.2 Sample geometry and container size and physical com-position must be the same for sample and standards.9. Procedure9.1 A sample of reactor coolant is analyzed by gamma rayspectrometry within a short period of time after the samplebeing taken from the reactor coolant system.9.2 A

26、n appropriate aliquant of the sample is counted as apressurized liquid or degasified and the removed gas countedon a gamma ray spectrometer immediately after degasificationoccurs.9.3 If a separated gas sample is counted, the method usedshould ensure that noble gas radionuclides are no retained bythe

27、 liquid phase. If they are, then the concentration from theliquid phase should be included in the calculation in 10.1.9.4 A second count of the same aliquant of gas may berequired several hours later for accurate determination oflonger lived noble gas radionuclides.9.5 Tabulate the concentrations, u

28、niformly measured inCi/cc (37 kBq/cc) or Ci/g (37 kBq/g), of all applicable noblegas radionuclides identified in the sample.9.6 The times between taking the reactor coolant sampleand performing DEX gamma ray spectrometry analyses shouldbe consistent from sample to sample so that the ingrowth frompro

29、genitors and decay to progeny will be consistently ac-counted using the calculation in 10.1.10. Calculation10.1 The DEX value is calculated as follows:DEX1Cig5(1oi51AI3 DFI(1)where:DEX = an activity concentration equivalent to133Xe by allnoble gas fission products from Table 1, Ci/g,AI= the activity

30、 of the individual radionuclide identifiedin Table 1, Ci/g, andDFI= the ratio of the dose conversion factor each radionu-clide to the dose conversion factor for133Xe (listed inTable 1), dimensionless.3The boldface numbers in parentheses refer to a list of references at the end ofthis standard.TABLE

31、1 Table of Equivalence Factors for Noble Gas FissionProductsNumber Radionuclide Factor1 Kr-85m 4.7962 Kr-85 0.0763 Kr-87 26.4034 Kr-88 65.3855 Xe-131m 0.2496 Xe-133m 0.8787 Xe-133 1.0008 Xe-135m 13.0779 Xe-135 7.62810 Xe-138 36.989D7727 111210.2 If a radionuclide listed in Table 1 is not detected, t

32、heminimum detectable concentration for the gamma ray spec-trometry count time and sample volume (gas and liquid) usedfor analysis shall be the activity of that radionuclide.10.3 If the methodology to provide a degasified liquidcontains gas activity, the activity for each individual radionu-clide sha

33、ll be added to the gas phase activity of thatradionuclide, respectively, in Eq 1.11. Keywords11.1 DEX; dose correction; dose equivalent xenon; noblegasesREFERENCES(1) “External Exposure to Radionuclides in Air, Water and Soil,” FederalGuidance Report No. 12, EPA-402-R-93-081.(2) “Calculation of Dist

34、ance Factors for Power and Test Reactor Sites,”Table III of TID-14844, AEC, 1962.(3) “Calculation of Annual Doses to Man from Routine releases ofReactor Effluents for the Purpose of Evaluating Compliance with10CFR Part 50,Appendix I,” U.S. NRC Regulatory Guide 1.109, Rev.1, Table E-7, 1977.(4) “Comm

35、itted Dose Equivalent in Target Organs or Tissues per Intakeof Unit Activity,” ICRP 30, Supplement to Part 1, pp. 192212.(5) “Standard Radiological Effluent Technical Specifications For Pressur-ized Water Reactors,” U.S. NRC NUREG-0472, Rev 3, 1983.(6) 10CFR50 Domestic Licensing of Production and Ut

36、ilizationFacilities, Appendix I.(7) 10CFR100 Reactor Site Criteria.(8) “Deletion of E Bar Definition and Revision to RCS Specific ActivityTechnical Specification,” TSTF-490, Rev 0 ADAMS NumberML052630462, 2007.ASTM International takes no position respecting the validity of any patent rights asserted

37、 in connection with any item mentionedin this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the riskof infringement of such rights, are entirely their own responsibility.This standard is subject to revision at any time by the

38、 responsible technical committee and must be reviewed every five years andif not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standardsand should be addressed to ASTM International Headquarters. Your comments will receive c

39、areful consideration at a meeting of theresponsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you shouldmake your views known to the ASTM Committee on Standards, at the address shown below.This standard is copyrighted by ASTM Internati

40、onal, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959,United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the aboveaddress or at 610-832-9585 (phone), 610-832-9555 (fax), or serviceastm.org (e-mail); or through the ASTM website(www.astm.org). Permission rights to photocopy the standard may also be secured from the ASTM website (www.astm.org/COPYRIGHT/).D7727 1113

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1