ImageVerifierCode 换一换
格式:PDF , 页数:9 ,大小:198.25KB ,
资源ID:526205      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-526205.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM D7731-2011 1250 Standard Test Method for Determination of Dipropylene Glycol Monobutyl Ether and Ethylene Glycol Monobutyl Ether in Sea Water by Liquid Chromatography Tandem M.pdf)为本站会员(testyield361)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM D7731-2011 1250 Standard Test Method for Determination of Dipropylene Glycol Monobutyl Ether and Ethylene Glycol Monobutyl Ether in Sea Water by Liquid Chromatography Tandem M.pdf

1、Designation: D7731 11Standard Test Method forDetermination of Dipropylene Glycol Monobutyl Ether andEthylene Glycol Monobutyl Ether in Sea Water by LiquidChromatography/Tandem Mass Spectrometry (LC/MS/MS)1This standard is issued under the fixed designation D7731; the number immediately following the

2、 designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This procedure covers the

3、 determination of DipropyleneGlycol Monobutyl Ether (DPGBE) and Ethylene GlycolMonobutyl Ether (EGBE) in sea water by direct injection usingliquid chromatography (LC) and detection with tandem massspectrometry (MS/MS). This analyte is qualitatively and quan-titatively determined by this method. This

4、 method adheres toselected reaction monitoring (SRM) mass spectrometry.1.2 The Detection Verification Level (DVL) and ReportingRange for DPGBE and EGBE are listed in Table 1.1.2.1 The DVL is required to be at a concentration at least3 times below the Reporting Limit (RL) and have a signal/noise rati

5、o greater than 3:1. Fig. 1 and Fig. 2 display thesignal/noise ratio of the single reaction monitoring (SRM)transition.1.2.2 The reporting limit is the concentration of the Level 1calibration standard as shown in Table 4 for DPGBE andEGBE, taking into account the 20% sample preparation dilu-tion fact

6、or.1.3 The values stated in SI units are to be regarded asstandard. No other units of measurement are included in thisstandard.1.4 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish a

7、ppro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2D1193 Specification for Reagent WaterD2777 Practice for Determination of Precision and Bias ofApplicable Test Methods of Committee D19 on Water2.

8、2 Other Standards:3EPApublication SW-846 Test Methods for Evaluating SolidWaste, Physical/Chemical Methods3. Terminology3.1 Definitions:3.1.1 detection verification level, DVL, na concentrationthat has a signal/noise ratio greater than 3:1 and is at least 3times below the Reporting Limit (RL).3.1.2

9、reporting limit, RL, nthe concentration of thelowest-level calibration standard used for quantification.3.1.2.1 DiscussionIn this test method, a 20 mL samplealiquot is diluted to a 25 mL final volume after thoroughlyrinsing the collection vial with acetonitrile for quantitativetransfer. In this case

10、, the lowest calibration level of 100 ppb forEGBE would allow for a reporting limit of 125 ppb to beachieved.3.2 Abbreviations:3.2.1 ppbparts per billion, g/L3.2.2 pptparts per trillion, ng/L3.2.3 mMmillimolar,1x10-3moles/L3.2.4 NAno addition3.2.5 NDnon-detect1This test method is under the jurisdict

11、ion of ASTM Committee D19 on Waterand is the direct responsibility of Subcommittee D19.06 on Methods forAnalysis forOrganic Substances in Water.Current edition approved May 1, 2011. Published May, 2011. DOI: 10.1520/D773111.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcont

12、act ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3Available from from National Technical Information Service (NTIS), U.S.Department of Commerce, 5285 Port Royal Road, Springfield, VA, 22

13、161 or athttp:/www.epa.gov/epawaste/hazard/testmethods/index.htmTABLE 1 Detection Verification Level and Reporting RangeAnalyte DVL (g/L) Reporting Range (g/L)DPGBE 0.2 110EGBE 25 12512501Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United State

14、s.FIG. 1 Detection Verification Level Signal/Noise Ratio.FIG. 2 Reporting Level (Calibra tion standard) Signal/Noise Ratio.D7731 1124. Summary of Test Method4.1 This is a performance based method, and modificationsare allowed to improve performance.4.2 For DPGBE and EGBE analysis, samples a re shipp

15、ed tothe lab between 0C and 6C and analyzed within 5 days ofcollection. The DOW MSDS sheet on DOWANOL* DPNBglycol ether (DPGBE) Issue Date: 06/18/2010 lists that thematerial is readily biodegradable. The Organisation for Eco-nomic Co-Operation and Development (OECD) 302B Test lists96% biodegradation

16、 in 28 days.4.3 In the lab, the entire collected 20 mL sample is spikedwith surrogate and brought to a volume of 25 mL withacetonitrile. This prepared sample is then filtered using asyringe driven filter unit, and analyzed by LC/MS/MS. Ifvisible oil is present, the prepared sample is allowed to sett

17、leresulting in an oil layer at the top of the 25 mL solution. Aportion of the aqueous (bottom) layer is filtered, leaving the oillayer behind, through a syringe driven filter assembly andanalyzed by LC/MS/MS.4.4 DPGBE, EGBE and surrogate are identified by retentiontime and one SRM transition. The ta

18、rget analytes and surrogateare quantitated using the SRM transitions utilizing an externalcalibration. The final report issued for each sample lists theconcentration of DPGBE, EGBE and the surrogate recovery.5. Significance and Use5.1 DPGBE and EGBE have a variety of residential andindustrial applic

19、ations such as, cleaning formulations, surfacecoatings, inks and cosmetics. These analytes may be releasedinto the environment at levels that may be harmful to aquaticlife.5.2 This method has been investigated for use with reagentand sea water.6. Interferences6.1 Method interferences may be caused b

20、y contaminants insolvents, reagents, glassware, and other apparatus producingdiscrete artifacts or elevated baselines. All of these materialsare demonstrated to be free from interferences by analyzinglaboratory reagent blanks under the same conditions assamples.6.2 All glassware is washed in hot wat

21、er with detergent andrinsed in hot water followed by distilled water. Detergentscontaining DPGBE or EGBE must not be used. The glasswareis then dried and heated in an oven at 250C for 15 to 30minutes. All glassware is subsequently cleaned with acetonefollowed by methanol.6.3 All reagents and solvent

22、s should be pesticide residuepurity or higher to minimize interference problems.6.4 Matrix interferences may be caused by contaminants inthe sample. The extent of matrix interferences can varyconsiderably from sample source depending on variations ofthe sample matrix.7. Apparatus7.1 LC/MS/MS System7

23、.1.1 Liquid Chromatography SystemA complete LC sys-tem is needed in order to analyze samples.4Any system that iscapable of performing at the flows, pressures, controlledtemperatures, sample volumes, and requirements of the stan-dard may be used.7.1.2 Analytical ColumnWaters- XBridgey, 2.1 x 150mm, 3

24、.5 m particle size was used to develop this test method.Any column that achieves baseline resolution of these analytesmay be used. Baseline resolution simplifies data analysis andcan reduce the chance of ion suppression, leading to higherlimits of detection. The retention times and order of elutionm

25、ay change depending on the column used and need to bemonitored.7.1.3 Tandem Mass Spectrometer SystemA MS/MS sys-tem capable of SRM analysis.5Any system that is capable ofperforming at the requirements in this procedure may be used.7.2 Filtration Device:7.2.1 Hypodermic syringeA Lock Tip Glass Syring

26、e ca-pable of holding a Millext HV Syringe Driven Filter UnitPVDF 0.22 m or similar may be used.7.2.1.1 A 25 mL Lock Tip Glass Syringe size was used inthis test method.7.2.2 FilterMillext HV Syringe Driven Filter Unit PVDF0.22 m (Millipore Corporation, Catalog #SLGV033NS) orsimilar may be used.8. Re

27、agents and Materials8.1 Purity of ReagentsHigh Performance Liquid Chroma-tography (HPLC) pesticide residue analysis and spectropho-tometry grade chemicals shall be used in all tests. Unlessindicated otherwise, it is intended that all reagents shallconform to the Committee on Analytical Reagents of t

28、heAmerican Chemical Society.6Other reagent grades may beused provided they are first determined to be of sufficientlyhigh purity to permit their use without affecting the accuracy ofthe measurements.8.2 Purity of WaterUnless otherwise indi cated, refer-ences to water shall be understood to mean reag

29、ent waterconforming to ASTM Type 1 of Specification D1193. It mustbe demonstrated that this water does not contain contaminantsat concentrations sufficient to interfere with the analysis.8.3 GasesUltrapure nitrogen and argon.8.4 Acetonitrile (CAS # 75-05-8).8.5 Methanol (CAS # 67-56-1).8.6 Formic Ac

30、id (CAS # 64-18-6).8.7 Propanol (CAS # 67-63-0).8.8 DPGBEDipropylene Glycol Monobutyl Ether (CAS #29911-28-2).4A Waters Alliance High Performance Liquid Chromatography (HPLC) Systemwas used to develop this test method. All parameters in this test method are basedon this system and may vary depending

31、 on your instrument.5AWaters Quattro microAPI tandem quadrupole mass spectrometer was used todevelop this test method.All parameters in this test method are based on this systemand may vary depending on your instrument.6Reagent Chemicals, American Chemical Society Specifications, AmericanChemical So

32、ciety, Washington, D.C. For Suggestions on the testing of reagents notlisted by the American Chemical Society, see Annual Standards for LaboratoryChemicals, BDH Ltd., Poole, Dorset, U.K., and the United States Pharmacopeia andNational Formulators, U.S. Pharmacopeial Convention, Inc. (USPC), Rockvill

33、e,MD.D7731 1138.9 EGBEEthylene Glycol Monobutyl Ether (CAS# 111-76-2).8.10 n-NP2EOnormal- Nonylphenol Diethoxylate (CAS#Not available).78.11 EGBE-D4 (2-butoxyethanol (1,1,2,2-D4) (OptionalSurrogate, Unlabeled CAS# 111-76- 2).89. Hazards9.1 Normal laboratory safety applies to this method. Ana-lysts s

34、hould wear safety glasses, gloves, and lab coats whenworking in the lab. Analysts should review the Material SafetyData Sheets (MSDS) for all reagents used in this method.10. Sampling10.1 Sampling and PreservationGrab samples should becollected in 20 mL pre-cleaned glass vials with Teflont linedsept

35、a caps demonstrated to be free of interferences. The vialshould be filled to approximately 20 mL. This may be justbelow the neck of the vial, depending on the vial manufacturer.This test method is based on a 20 mL sample size per analysis.Each sample should be collected in duplicate and a quadrupli-

36、cate sample must be included with each sample batch of 10 forMS/MSD quality control analyses. Store samples between 0Cand 6C from sample collection to sample preparation.Analyzethe sample within 5 days of collection.11. Preparation of Apparatus11.1 Liquid Chromatograph Operating Conditions411.1.1 In

37、jection volumes of all calibration standards andsamples are made at 100 L volume. The first sample analyzedafter the calibration curve is a blank to ensure there is nocarry-over. The gradient conditions for the liquid chromato-graph are shown in Table 2. Divert the column flow away fromthe electrosp

38、ray source for 0 to 5 minutes after injection. Flowdiversion to waste may be done using the mass spectrometerdivert valve, divert tubing configurations vary from manualinjection. Sea water samples contain nonvolatile salts, the first5 minute elution is diverted in order to keep the massspectrometer

39、source clean.11.2 LC Conditions:11.2.1 Needle Wash Solvent60% Acetonitrile/40%2-propanol11.2.2 TemperaturesColumn, 30C; Sample compart-ment, 15C.11.2.3 Seal Wash60% Acetonitrile/40% 2-propanol.11.3 Mass Spectrometer Parameters5:11.3.1 To acquire the maximum number of data points perSRM channel while

40、 maintaining adequate sensitivity, the tuneparameters may be optimized according to your instrument.Each peak requires at least 10 scans per peak for adequatequantitation. This procedure contains DPGBE, EGBE and onesurrogate which are in three SRM acquisition functions tooptimize sensitivity. Variab

41、le parameters regarding retentiontimes, SRM transitions, and cone and collision energies areshown in Table 3. Mass spectrometer parameters used in thedevelopment of this method are listed here:Capillary Voltage: 3.5 kVCone: Variable depending on analyte (Table 3)Extractor: 2 VoltsRF Lens: 0.2 VoltsS

42、ource Temperature: 120CDesolvation Temperature: 350CDesolvation Gas Flow: 800 L/hrCone Gas Flow: 25 L/hrLow Mass Resolution 1: 14.5High Mass Resolution 1: 14.5Ion Energy 1: 0.5Entrance Energy: -1Collision Energy: Variable depending on analyte (Table 3)Exit Energy: 1Low Mass Resolution 2: 14.5High Ma

43、ss resolution 2: 14.5Ion Energy 2: 0.8Multiplier: 650Gas Cell Pirani Gauge: 7.0 x 10-3TorrInter-Channel Delay : 0.1 secondsInter-Scan Delay: 0.1 secondsDwell: 0.1 secondsSolvent Delay: 5 minutes12. Calibration and Standardization12.1 The mass spectrometer must be calibrated p er manu-facturer specif

44、ications before analysis. In order to obtainaccurate analytical values through using this test method withinthe confidence limits, the following procedures must be fol-lowed when performing the test method. Prepare all solutionsin the lab using Class A volumetric glassware.12.2 Calibration and Stand

45、ardizationTo calibrate the in-strument, analyze six calibration standards and the DVLcontaining (nominal concentrations in Table 4) DPGBE, EGBEand n-NP2EO.Acalibration solution is prepared from standardmaterials or they are purchased as certified solutions. Level 6calibration solution containing the

46、 targets and surrogate isprepared and aliquots of that solution are diluted to prepare7Asource of n-NP2EO isAccustandard, Inc. 125 Market Street, New Haven, CT06513 or Cambridge Isotope Laboratories, 50 Frontage Road, Andover, MA01810-5413.8A source of EGBE-D4 is Cambridge Isotope Laboratories, 50 F

47、rontage Road,Andover, MA 01810-5413.TABLE 2 Gradient C onditions for Liquid ChromatographyTime (min) Flow (mL/min) Percent 95% Water/ 5% CH3CN Percent CH3CN Percent 2% Formic Acid 95% Water/ 5% CH3CN0.0 0.30 95 0 52.0 0.30 95 0 55.0 0.30 0 95 514.0 0.30 0 95 515.0 0.30 95 0 518.0 0.30 95 0 5D7731 11

48、4Levels 1 through 5 and the DVL. The following steps willproduce standards with the concentration values shown inTable 4. The analyst is responsible for recording initialcomponent weights correctly and calculating and preparingappropriate dilution calculations.12.2.1 Prepare Level 6 calibration stoc

49、k standard at 1000ppb for EGBE, 8 ppb for DPGBE and 40 ppb for n-NP2EO in80% water/20% acetonitrile. The EGBE and DPGBE concen-trated stock solutions were prepared in methanol at approxi-mately 2 g/L concentration and the n- NP2EO surrogateconcentrated stock solution was prepared in acetonitrile atapproximately 0.5 g/L. The preparation of the stock standardcan be accomplished using different volumes and concentra-tions of stock solutions as is accustomed in the individuallaboratory. Depending on the prepared stock concentrations,the so

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1