1、Designation: E119 18 An American National StandardStandard Test Methods forFire Tests of Building Construction and Materials1This standard is issued under the fixed designation E119; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision,
2、the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the U.S. Department of Defense.INTRODUCTIONThe performance of w
3、alls, columns, floors, and other building members under fire-exposureconditions is an item of major importance in securing constructions that are safe, and that are not amenace to neighboring structures or to the public. Recognition of this is registered in the codes ofmany authorities, municipal an
4、d other. It is important to secure balance of the many units in a singlebuilding, and of buildings of like character and use in a community; and also to promote uniformityin requirements of various authorities throughout the country. To do this it is necessary that thefire-resistive properties of ma
5、terials and assemblies be measured and specified according to a commonstandard expressed in terms that are applicable alike to a wide variety of materials, situations, andconditions of exposure.Such a standard is found in the test methods that follow. They prescribe a standard exposing fire ofcontro
6、lled extent and severity. Performance is defined as the period of resistance to standard exposureelapsing before the first critical point in behavior is observed. Results are reported in units in whichfield exposures can be judged and expressed.The test methods may be cited as the “Standard Fire Tes
7、ts,” and the performance or exposure shallbe expressed as “2-h,” “6-h,” “12-h,” etc.When a factor of safety exceeding that inherent in the test conditions is desired, a proportionalincrease should be made in the specified time-classification period.1. Scope*1.1 The test methods described in this fir
8、e-test-responsestandard are applicable to assemblies of masonry units and tocomposite assemblies of structural materials for buildings,including loadbearing and other walls and partitions, columns,girders, beams, slabs, and composite slab and beam assembliesfor floors and roofs. They are also applic
9、able to other assem-blies and structural units that constitute permanent integralparts of a finished building.1.2 It is the intent that classifications shall register compara-tive performance to specific fire-test conditions during theperiod of exposure and shall not be construed as havingdetermined
10、 suitability under other conditions or for use afterfire exposure.1.3 This standard is used to measure and describe theresponse of materials, products, or assemblies to heat andflame under controlled conditions, but does not by itselfincorporate all factors required for fire hazard or fire riskasses
11、sment of the materials, products or assemblies underactual fire conditions.1.4 These test methods prescribe a standard fire exposurefor comparing the test results of building construction assem-blies. The results of these tests are one factor in assessingpredicted fire performance of building constr
12、uction and assem-blies. Application of these test results to predict the perfor-mance of actual building construction requires the evaluationof test conditions.1.5 The values stated in inch-pound units are to be regardedas standard. The values given in parentheses are mathematicalconversions to SI u
13、nits that are provided for information onlyand are not considered standard.1.6 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is the1These test methods are under the jurisdiction ofASTM Committee E05 on FireStandards and are the direct respon
14、sibility of Subcommittee E05.11 on FireResistance.Current edition approved March 1, 2018. Published April 2018. Originallyapproved in 1917. Last previous edition approved in 2016 as E119 16a. DOI:10.1520/E0119-18.These test methods, of which the present standard represents a revision, wereprepared b
15、y Sectional Committee on Fire Tests of Materials and Construction, underthe joint sponsorship of the National Bureau of Standards, theANSI Fire ProtectionGroup, and ASTM, functioning under the procedure of the American NationalStandards Institute.*A Summary of Changes section appears at the end of t
16、his standardCopyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United StatesThis international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for theDevelopm
17、ent of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.1responsibility of the user of this standard to establish appro-priate safety, health, and environmental practices and deter-mine the applicability of regulat
18、ory limitations prior to use.1.7 The text of this standard references notes and footnoteswhich provide explanatory material. These notes and footnotes(excluding those in tables and figures) shall not be consideredas requirements of the standard.1.8 This international standard was developed in accor-
19、dance with internationally recognized principles on standard-ization established in the Decision on Principles for theDevelopment of International Standards, Guides and Recom-mendations issued by the World Trade Organization TechnicalBarriers to Trade (TBT) Committee.2. Referenced Documents2.1 ASTM
20、Standards:2C569 Test Method for Indentation Hardness of PreformedThermal Insulations (Withdrawn 1988)3D6513 Practice for Calculating the Superimposed Load onWood-frame Walls for Standard Fire-Resistance TestsE176 Terminology of Fire StandardsE177 Practice for Use of the Terms Precision and Bias inAS
21、TM Test MethodsE691 Practice for Conducting an Interlaboratory Study toDetermine the Precision of a Test MethodE814 Test Method for Fire Tests of Penetration FirestopSystemsE2226 Practice for Application of Hose Stream3. Terminology3.1 DefinitionsFor definitions of terms found in this testmethod, re
22、fer to Terminology E176.4. Significance and Use4.1 These test methods are intended to evaluate the durationfor which the types of building elements noted in 1.1 contain afire, retain their structural integrity, or exhibit both propertiesduring a predetermined test exposure.4.2 The test exposes a tes
23、t specimen to a standard firecontrolled to achieve specified temperatures throughout aspecified time period. When required, the fire exposure isfollowed by the application of a specified standard fire hosestream applied in accordance with Practice E2226. The testprovides a relative measure of the fi
24、re-test-response of compa-rable building elements under these fire exposure conditions.The exposure is not representative of all fire conditions becauseconditions vary with changes in the amount, nature anddistribution of fire loading, ventilation, compartment size andconfiguration, and heat sink ch
25、aracteristics of the compartment.Variation from the test conditions or test specimenconstruction, such as size, materials, method of assembly, alsoaffects the fire-test-response. For these reasons, evaluation ofthe variation is required for application to construction in thefield.4.3 The test standa
26、rd provides for the following:4.3.1 For walls, partitions, and floor or roof test specimens:4.3.1.1 Measurement of the transmission of heat.4.3.1.2 Measurement of the transmission of hot gasesthrough the test specimen.4.3.1.3 For loadbearing elements, measurement of the loadcarrying ability of the t
27、est specimen during the test exposure.4.3.2 For individual loadbearing members such as beamsand columns:4.3.2.1 Measurement of the load carrying ability under thetest exposure with consideration for the end support conditions(that is, restrained or not restrained).4.4 The test standard does not prov
28、ide the following:4.4.1 Information as to performance of test specimensconstructed with components or lengths other than those tested.4.4.2 Evaluation of the degree by which the test specimencontributes to the fire hazard by generation of smoke, toxicgases, or other products of combustion.4.4.3 Meas
29、urement of the degree of control or limitation ofthe passage of smoke or products of combustion through thetest specimen.4.4.4 Simulation of the fire behavior of joints betweenbuilding elements such as floor-wall or wall-wall, etc., connec-tions.4.4.5 Measurement of flame spread over the surface of
30、testspecimens.4.4.6 The effect on fire-resistance of conventional openingsin the test specimen, that is, electrical receptacle outlets,plumbing pipe, etc., unless specifically provided for in theconstruction tested. Also see Test Method E814 for testing offire stops.5. Test Specimen5.1 The test spec
31、imen shall be representative of the con-struction that the test is intended to assess, as to materials,workmanship, and details such as dimensions of parts, andshall be built under conditions representative of those appliedin building construction and operation. The physical propertiesof the materia
32、ls and ingredients used in the test specimen shallbe determined and recorded.5.2 The size and dimensions of the test specimen specifiedherein shall apply for classifying constructions of dimensionswithin the range employed in buildings. When the conditionsof use limit the construction to smaller dim
33、ensions, thedimensions of the test specimen shall be reduced proportion-ately for a test qualifying them for such restricted use.5.3 Test specimens designed with a built-up roof shall betested with a roof covering of 3-ply, 15-lb (6.8-kg) type felt,with not more than 120 lb (54 kg) per square (100 f
34、t2(9 m2)ofhot mopping asphalt without gravel surfacing. Tests with thiscovering do not preclude the field use of other coverings witha larger number of plys of felt, with a greater amount of asphaltor with gravel surfacing.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orconta
35、ct ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3The last approved version of this historical standard is referenced onwww.astm.org.E119 1825.4 Roofing systems designed for other than th
36、e use ofbuilt-up roof coverings shall be tested using materials anddetails of construction representative of field application.6. Protection and Conditioning of Test Specimen6.1 Protect the test specimen during and after fabrication toensure its quality and condition at the time of test. The testspe
37、cimen shall not be tested until its required strength has beenattained, and, until an air-dry condition has been achieved inaccordance with the requirements given in 6.2 6.4. Protectthe testing equipment and test specimen undergoing the fire-resistance test from any condition of wind or weather that
38、 iscapable of affecting results. The ambient air temperature at thebeginning of the test shall be within the range of 50 to 90F (10to 32C). The velocity of air across the unexposed surface ofthe test specimen, measured just before the test begins, shallnot exceed 4.4 ft (1.3 m/s), as determined by a
39、n anemometerplaced at right angles to the unexposed surface. When me-chanical ventilation is employed during the test, an air streamshall not be directed across the surface of the test specimen.6.2 Prior to the fire-resistance test, condition test specimenswith the objective of providing moisture co
40、ndition within thetest specimen representative of that in similar construction inbuildings. For purposes of standardization, this condition isestablished at equilibrium resulting from conditioning in anambient atmosphere of 50 % relative humidity at 73F (Note1).6.2.1 With some constructions it is di
41、fficult or impossible toachieve such uniformity. Where this is the case, test specimensare tested when the dampest portion of the test specimen, or theportion at 6-in. (152-mm) depth below the surface of massiveconstructions, has achieved a moisture content correspondingto conditioning to equilibriu
42、m with air in the range of 50 to75 % relative humidity at 73 6 5F (23 6 3C).6.2.2 When evidence is shown that test specimens condi-tioned in a heated building will fail to meet the requirements of6.2 after a 12-month conditioning period, or in the event thatthe nature of the construction is such tha
43、t it is evident thatconditioning of the test specimen interior is prevented byhermetic sealing, the moisture condition requirements of 6.2are permitted to be waived, and either 6.2.2.1 or 6.2.2.2 shallapply.6.2.2.1 Alternative conditioning methods are permitted tobe used to achieve test specimen equ
44、ilibrium prescribed in 6.2(Note 2), or6.2.2.2 The specimen tested when its strength is at leastequal to its design strength after a minimum 28 day condition-ing period.6.3 Avoid conditioning procedures that will alter the struc-tural or fire-resistance characteristics of the test specimen fromthose
45、produced as the result of conditiong in accordance withprocedures given in 6.2.6.4 Information on the actual moisture content and distri-bution within the test specimen shall be obtained within 72 hprior to the fire. Include this information in the test report (Note3).NOTE 1Arecommended method for d
46、etermining the relative humiditywithin a hardened concrete test specimen with electric sensing elements isdescribed in Appendix I of the paper by Menzel, C. A., “A Method forDetermining the Moisture Condition of Hardened Concrete in Terms ofRelative Humidity,” Proceedings,ASTM, Vol 55, 1955, p. 1085
47、.Asimilarprocedure with electric sensing elements is permitted to be used todetermine the relative humidity within test specimens made with othermaterials.With wood constructions, the moisture meter based on the electricalresistance method can be used, when appropriate, as an alternative to therelat
48、ive humidity method to indicate when wood has attained the propermoisture content. Electrical methods are described on page 12-2 of the1999 edition of the Wood Handbook of the Forest Products Laboratory,U.S. Department of Agriculture. The relationships between relativehumidity and moisture content a
49、re given in Table 3-4 on p. 3-7. Thisindicates that wood has a moisture content of 13 % at a relative humidityof 70 % for a temperature of 70 to 80F (21 to 27C).NOTE 2An example where alternative conditioning may be employedis where concrete specimens are conditioned at elevated temperatures in a“heated building” to more rapidly obtain the conditions described in 6.2.In such cases, temperatures other than 73F are used to reach a maximum50 % relative humidity.NOTE 3If the moisture condition of the test specimen is likely tochange drastically from the 72-h sampling time
copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1