ImageVerifierCode 换一换
格式:PDF , 页数:10 ,大小:126.25KB ,
资源ID:527028      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-527028.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM E170-2014a 2867 Standard Terminology Relating to Radiation Measurements and Dosimetry《有关辐射测量和剂量测定的标准术语》.pdf)为本站会员(diecharacter305)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM E170-2014a 2867 Standard Terminology Relating to Radiation Measurements and Dosimetry《有关辐射测量和剂量测定的标准术语》.pdf

1、Designation: E170 14aStandard Terminology Relating toRadiation Measurements and Dosimetry1This standard is issued under the fixed designation E170; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A number

2、 in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.INTRODUCTIONThis terminology generally covers terms that apply to radiation measurements and dosimetryassociated with energy deposition and radiation eff

3、ects, or damage, in materials caused by interactionsby high-energy radiation fields. The common radiation fields considered are X-rays, gamma rays,electrons, alpha particles, neutrons, and mixtures of these fields. This treatment is not intended to beexhaustive but reflects special and common terms

4、used in technology and applications of interest toCommittee E10, as for example, in areas of radiation effects on components of nuclear power reactors,radiation hardness testing of electronics, and radiation processing of materials.This terminology uses recommended definitions and concepts of quanti

5、ties, with units, for radiationmeasurements as contained in the International Commission on Radiation Units and Measurements(ICRU) Report 85a on “Fundamental Quantities and Units for Ionizing Radiation,” October 20112Those terms that are defined essentially according to the terminology of ICRU Repor

6、t 85a will befollowed by ICRU in parentheses. It should also be noted that the units for quantities used are the latestadopted according to the International System of Units (SI) which are contained in Appendix X1 astaken from a table in ICRU Report 85a.2This terminology also uses recommended defini

7、tions of twoISO documents3, namely “International Vocabulary of Basic and General Terms in Metrology.” (VIM,2008) and “Guide to the Expression of Uncertainty in Measurement” (GUM, 1995). Those terms thatare defined essentially according to the terminology of these documents will be followed by eithe

8、rVIM or GUM in parentheses.A term is boldfaced when it is defined in this standard. For some terms, text in italics is used justbefore the definition to limit its field of application, for example, see activity.1. Referenced Documents1.1 ASTM Standards:4E380 Practice for Use of the International Sys

9、tem of Units(SI) (the Modernized Metric System) (Withdrawn 1997)5E456 Terminology Relating to Quality and StatisticsE706 Master Matrix for Light-Water Reactor Pressure VesselSurveillance Standards, E 706(0) (Withdrawn 2011)5E722 Practice for Characterizing Neutron Fluence Spectra inTerms of an Equiv

10、alent Monoenergetic Neutron Fluencefor Radiation-Hardness Testing of ElectronicsE910 Test Method for Application and Analysis of HeliumAccumulation Fluence Monitors for Reactor VesselSurveillance, E706 (IIIC)1.2 ISO Standards:3GUM Guide to the Expression of Uncertainty inMeasurement, ISO 1995VIM Int

11、ernational Vocabulary of Basic and General Termsin Metrology, ISO 20081.3 ICRU Documents:2ICRU 60 Fundamental Quantities and Units for IonizingRadiation, December 30, 1998ICRU 85a Fundamental Quantities and Units for IonizingRadiation, October, 20111This terminology is under the jurisdiction ofASTM

12、Committee E10 on NuclearTechnology and Applications and is the direct responsibility of SubcommitteeE10.93 on Editorial.Current edition approved Oct. 15, 2014. Published November 2014. Originallyapproved in 1963. Last previous edition approved in 2014 as E170 14. DOI:10.1520/E0170-14A.2ICRU Report 6

13、0 has been superceded by ICRU Report 85a on “FundamentalQuantities and Units for Ionizing Radiation,” October 2011. Both of thesedocuments are available from International Commission on Radiation Units andMeasurements (ICRU), 7910 Woodmont Ave., Suite 800, Bethesda, MD 20814.3Available from Internat

14、ional Organization for Standardization (ISO), 1 Rue deVarembe, Case Postale 56, CH-1211, Geneva 20, Switzerland, http:/www.iso.ch.4For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume informat

15、ion, refer to the standards Document Summary page onthe ASTM website.5The last approved version of this historical standard is referenced onwww.astm.org.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States11.4 NIST Document:6NIST Technical

16、 Note 1297 Guidelines for Evaluating andExpressing the Uncertainty of NIST MeasurementResults, 19942. Terminologyabsorbed dose (D)quotient of d by dm, where d is themean incremental energy imparted by ionizing radiation tomatter of incremental mass dm. (ICRU), thusD 5 d/dm (1)DISCUSSIONThe SI unit o

17、f absorbed dose is the gray (Gy), where 1gray is equivalent to the absorption of 1 joule per kilogram of thespecified material (1 Gy = 1 J/kg). The unit rad (1 rad = 100 erg/g =0.01 Gy) is still widely used in the nuclear community; however, itscontinued use is not encouraged. For a photon source un

18、der conditionsof charged particle equilibrium, the absorbed dose, D, may be ex-pressed as follows:D 5 Een/, (2)where: = fluence (m2),E = energy of the ionizing radiation (J), anden/ = mass energy absorption coefficient (m2/kg).If bremsstrahlung production within the specified material isnegligible,

19、the mass energy absorption coefficient (en/) is equal to themass energy transfer coefficient (tr/), and absorbed dose is equal tokerma if, in addition, charged particle equilibrium exists.absorbed dose rate (D)quotient of dD by dt where dD is theincrement of absorbed dose in the time interval dt (IC

20、RU),thusD5 dD/dt (3)SI unit: Gys1.DISCUSSIONThe absorbed-dose rate is often specified as an averagevalue over a longer time interval, for example, in units of Gymin1orGyh1.accuracycloseness of agreement between a measurementresult and an accepted reference value (see TerminologyE456).activation cros

21、s sectioncross section for processes in whichthe product nucleus is radioactive (see cross section).activity (A)of an amount of radionuclide in a particularenergy state at a given time, quotient of dN by dt, where dNis the mean change in the number of nuclei in that energystate due to spontaneous nu

22、clear transformations in the timeinterval dt (ICRU), thusA 52dN/dt (4)Unit: s1The special name for the unit of activity is the becquerel(Bq), where1Bq5 1s21(5)DISCUSSIONThe former special unit of activity was the curie (Ci),where1Ci5 3.7 31010s21exactly!. (6)The negative sign in Eq 4 is an indicatio

23、n that the activity is de-creasing with time. The “particular energy state” is the ground state ofthe nuclide unless otherwise specified. The activity of an amount ofradionuclide in a particular energy state is equal to the product of thedecay constant for that state and the number of nuclei in that

24、 state (thatis, A=N). (See decay constant.)analysis bandwidthspectral band used in a photometricinstrument, such as a densitometer, for the measurement ofoptical absorbance or reflectance.analysis wavelengthwavelength used in a spectrophotomet-ric instrument for the measurement of optical absorbance

25、 orreflectance.annihilation radiationgamma radiation produced by theannihilation of a positron and an electron. For particles atrest, two photons are produced, each having an energycorresponding to the rest mass of an electron (511 keV).backscatter peakpeak in the observed photon spectrum(normally b

26、elow about 0.25 MeV) resulting from large-angle(110) Compton scattering of gamma rays from materialsnear the detector. This peak will not have the same shape asthe full-energy peaks (being wider and skewed toward lowerenergy).benchmark neutron fieldwell-characterized neutron fieldwhich will provide

27、a fluence of neutrons for validation orcalibration of experimental techniques and methods and forvalidation of cross sections and other nuclear data. Thefollowing classification of benchmark neutron fields forreactor dosimetry has been made:7controlled neutron fieldneutron field physically well-defi

28、ned, and with some spectrum definition, employed for arestricted set of validation experiments.reference neutron fieldpermanent and reproducible neu-tron field less well characterized than a standard field butaccepted as a measurement reference by a community of users.standard neutron fieldpermanent

29、 and reproducible neutronfield with neutron fluence rate and energy spectra, and theirassociated spatial and angular distributions characterized tostate-of-the-art accuracy. Important field quantities must beverified by interlaboratory measurements and calculations.bremsstrahlungbroad-spectrum elect

30、romagnetic radiationemitted when an energetic charged particle is influenced bya strong electric field, such as the Coulomb field of an atomicnucleus.DISCUSSIONIn radiation processing, bremsstrahlung photons aregenerated by the deceleration or deflection of energetic electrons in atarget material. W

31、hen an electron passes close to an atomic nucleus, thestrong Coulomb field causes the electron to deviate from its originalmotion. This interaction results in a loss of kinetic energy by theelectron with the emission of electromagnetic radiation; the photonenergy distribution extends up to the maxim

32、um kinetic energy of theincident electron. This bremsstrahlung spectrum depends on the elec-tron energy, the composition and thickness of the target, and the angleof emission with respect to the incident electron.6Available from National Institute of Standards and Technology (NIST), 100Bureau Dr., S

33、top 1070, Gaithersburg, MD 20899-1070, USA, http:/www.nist.gov7Neutron Cross Sections for Reactor Dosimetry, International Atomic EnergyAgency, Laboratory Activities, Vienna, 1978, Vol 1, p. 62.E170 14a2buildup factorfor radiation passing through a medium,ratio of the total value of a specified radi

34、ation quantity (suchas absorbed dose) at any point in that medium to thecontribution to that quantity from the incident uncollidedradiation reaching that point.cadmium ratioratio of the neutron reaction rate measuredwith a given bare neutron detector to the neutron reactionrate measured with an iden

35、tical neutron detector enclosed bya particular cadmium cover and exposed in the same neutronfield at the same or an equivalent spatial location.DISCUSSIONIn practice, meaningful experimental values can beobtained in an isotropic neutron field by using a cadmium filterapproximately 1 mm thick.calibra

36、ted instrumentinstrument for which the responsehas been documented upon being directly compared with theresponse of a standard instrument, both having been exposedto the same radiation field under the same conditions; or onefor which the response has been documented upon beingexposed to a standard r

37、adiation field under well-definedconditions.calibration source or fieldsee electron standard field, -raystandard field, and X-ray standard field.calorimeterinstrument capable of making absolute mea-surements of energy deposition (or absorbed dose) in amaterial through measurement of its change in te

38、mperatureand a knowledge of the characteristics of its materialconstruction.certified reference materialmaterial that has been charac-terized by a recognized standard or testing laboratory, forsome of its chemical or physical properties, and that isgenerally used for calibration of a measurement sys

39、tem, orfor development or evaluation of a measurement method.DISCUSSIONCertification of a reference material can be obtained byone of the following three established routes of measurement ofproperties: (1) using a previously validated reference method; (2) usingtwo or more independent, reliable meas

40、urement methods; and (3) usingan ad hoc network of cooperating laboratories, technically competent,and thoroughly knowledgeable with the materials being tested. Thecertified reference materials provided by the United States NationalInstitute of Standards and Technology are called Standard ReferenceM

41、aterials.charged particle equilibriumcondition that exists in anincremental volume within a material under irradiation if thekinetic energies and number of charged particles (of eachtype) entering that volume are equal to those leaving thatvolume.DISCUSSIONWhen electrons are the predominant charged

42、particle,the term “electron equilibrium” is often used to describe chargedparticle equilibrium. See also the discussions attached to the definitionsof kerma and absorbed dose.coincidence sum peakpeak in the observed photon spec-trum produced at an energy corresponding to the sum of theenergies of tw

43、o or more gamma- or x-rays from a singlenuclear event when the emitted photons interact with thedetector within the resolving time of the detector.Compton edge (Ec)maximum energy value of electrons ofthe Compton scattering continuum. The energy value of theCompton edge isEc5 E2E112E0.511(7)which cor

44、responds to 180 scattering of the primary pho-ton of energy E(MeV). For a 1 MeV photon, the Comptonedge is about 0.8 MeV.Compton scatteringelastic scattering of a photon by anatomic electron, under the condition of conservation ofmomentum, that is, the vector sum of the momenta of theoutgoing electr

45、on and photon is equal to the momentum ofthe incident photon. The scattered photon energy, E,isgiven byE5E11E1 2 cos !0.511(8)where Eis the incident photon energy in MeV and isthe angle between the direction of the primary and scatteredphoton. The electron energy, Ee, is equal to E E.continuumsmooth

46、 distribution of energy deposited in agamma detector arising from partial energy absorption fromCompton scattering or other processes (for example,Bremsstrahlung). See Compton scattering.cross section ()of a target entity, for a particular interac-tion produced by incident charged or uncharged parti

47、cles ofa given type and energy, quotient of Nintby , where Nintisthe mean number of such interactions per target entitysubjected to the fluence (adapted from ICRU), thus 5 Nint/ (9)Unit: m2DISCUSSIONThe special unit of cross section is the barn, b, where1b5 10228m25 10224cm2(10)decay constant ()of a

48、 radionuclide in a particular energystate, quotient of dN/N by dt, where dN/N is the meanfractional change in the number of nuclei in that energy statedue to spontaneous nuclear transformations in the timeinterval dt (ICRU), thus 52dNNdt(11)Unit: s1DISCUSSIONThe quantity (ln 2)/ is commonly called t

49、he half-life,T12, of the radionuclide, that is, the time taken for the activity of anamount of radionuclide to become half its initial value.depth-dose distributionvariation of absorbed dose withdepth from the incident surface of a material exposed to agiven radiation.displacement dose (Dd)quotient of ddby dm, where ddisthat part of the mean energy imparted by radiation to matterwhich produces atomic displacements (that is, excluding thepart that produces ionization and exci

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1