ImageVerifierCode 换一换
格式:PDF , 页数:6 ,大小:117.63KB ,
资源ID:527380      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-527380.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM E313-2015e1 5411 Standard Practice for Calculating Yellowness and Whiteness Indices from Instrumentally Measured Color Coordinates《计算仪器测量颜色坐标的白色和黄色指数的标准实施规程》.pdf)为本站会员(dealItalian200)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM E313-2015e1 5411 Standard Practice for Calculating Yellowness and Whiteness Indices from Instrumentally Measured Color Coordinates《计算仪器测量颜色坐标的白色和黄色指数的标准实施规程》.pdf

1、Designation: E313 151Standard Practice forCalculating Yellowness and Whiteness Indices fromInstrumentally Measured Color Coordinates1This standard is issued under the fixed designation E313; the number immediately following the designation indicates the year oforiginal adoption or, in the case of re

2、vision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1NOTESection 7 was corrected editorially in June 2015.1. Scope1.1 This practice provides numbers that correlat

3、e withvisual ratings of yellowness or whiteness of white and near-white or colorless object-color specimens, viewed in daylightby an observer with normal color vision. White textiles, paints,and plastics are a few of the materials that can be described bythe indices of yellowness or whiteness calcul

4、ated by thispractice.1.2 For a complete analysis of object colors, by a specifiedobserver and under a specified illuminant, use of three param-eters is required. For near-white specimens, however, it is oftenuseful to calculate single-number scales of yellowness orwhiteness. This practice provides r

5、ecommended equations forsuch scales and discusses their derivations and uses, and limitsto their applicability (see also Ref (1)2).1.3 The values stated in SI units are to be regarded asstandard. No other units of measurement are included in thisstandard.1.4 This standard does not purport to address

6、 all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:3D1535 Practice fo

7、r Specifying Color by the Munsell SystemD1729 Practice for Visual Appraisal of Colors and ColorDifferences of Diffusely-Illuminated Opaque MaterialsD1925 Test Method for Yellowness Index of Plastics,4E284 Terminology of AppearanceE308 Practice for Computing the Colors of Objects by Usingthe CIE Syst

8、emE805 Practice for Identification of Instrumental Methods ofColor or Color-Difference Measurement of MaterialsE991 Practice for Color Measurement of Fluorescent Speci-mens Using the One-Monochromator MethodE1164 Practice for Obtaining Spectrometric Data for Object-Color EvaluationE1247 Practice for

9、 Detecting Fluorescence in Object-ColorSpecimens by SpectrophotometryE1331 Test Method for Reflectance Factor and Color bySpectrophotometry Using Hemispherical GeometryE1345 Practice for Reducing the Effect of Variability ofColor Measurement by Use of Multiple MeasurementsE1347 Test Method for Color

10、 and Color-Difference Mea-surement by Tristimulus ColorimetryE1348 Test Method for Transmittance and Color by Spec-trophotometry Using Hemispherical GeometryE1349 Test Method for Reflectance Factor and Color bySpectrophotometry Using Bidirectional (45:0 or 0:45)GeometryE1360 Practice for Specifying

11、Color by Using the OpticalSociety of America Uniform Color Scales SystemE1499 Guide for Selection, Evaluation, and Training ofObserversE1541 Practice for Specifying and Matching Color Usingthe Colorcurve System (Withdrawn 2007)53. Terminology3.1 Terms and definitions in Terminology E284 are appli-ca

12、ble to this practice.3.2 Definitions:1This practice is under the jurisdiction of ASTM Committee E12 on Color andAppearance and is the direct responsibility of Subcommittee E12.04 on Color andAppearance Analysis.Current edition approved Jan. 1, 2015. Published February 2015. Originallyapproved in 196

13、7. Last previous edition approved in 2010 as E313 10. DOI:10.1520/E0313-15E01.2The boldface numbers in parentheses refer to the list of references at the end ofthis practice.3For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For

14、Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.4The last approved version of this historical standard is referenced onwww.astm.org. Replaced by Section 6 of E313.5The last approved version of this historical standard is referenced onw

15、ww.astm.org.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States13.2.1 perfect reflecting diffuser, nideal reflecting surfacethat neither absorbs nor transmits light, but reflects diffusely,with the radiance of the reflecting surface being

16、 the same for allreflecting angles, regardless of the angular distribution of theincident light.3.2.2 whiteness, nthe attribute of color perception bywhich an object color is judged to approach the preferredwhite.3.2.3 whiteness index, WI, na number, computed by agiven procedure from colorimetric da

17、ta, that indicates thedegree of departure of an object color from that of a preferredwhite.3.2.4 yellowness, nthe attribute of color perception bywhich an object color is judged to depart from colorless or apreferred white toward yellow.3.2.5 yellowness index, YI, na number, computed by agiven proce

18、dure from colorimetric or spectrophotometric data,that indicates the degree of departure of an object color fromcolorless or from a preferred white, toward yellow.3.2.5.1 DiscussionNegative values of YI denote departuretoward blue.3.3 Definitions of Terms Specific to This Standard:3.3.1 near white,

19、na color having a Munsell value greaterthan 8.3 (luminous reflectance factor Y = 63) and Munsellchroma no greater than 0.5 for B hues, 0.8 for Y hues, and 0.3for all other hues.3.3.2 preferred white, ncolor of a white standard used asthe basis for calculating indices of whiteness or yellowness asthe

20、 departure of the color of the specimen from that of thepreferred white; in this practice, the perfect reflecting diffuser.4. Summary of Practice4.1 The calculations described in this practice assume thatspecimens have been measured according to Practices E1164and E308 and one of the Test Methods E1

21、331, E1347, E1348,or E1349, depending on the type of specimen and measuringinstrument used (see also Practice E805).4.2 This practice takes as a starting point for the calculationsCIE tristimulus values X, Y, and Z for one of the CIE standardobservers and one of the CIE standard or recommendedillumi

22、nants of daylight quality. Such tristimulus values areavailable by use of modern color measuring instruments.4.3 Equations for the preferred methods of calculating YIand WI are described in Sections 6 and 7, respectively.Equations for calculating other quantities used as indices ofyellowness or whit

23、eness are given in Appendix X1 andAppendix X2, respectively.5. Significance and Use5.1 This practice should be used only to compare specimensof the same material and same general appearance. Forexample, a series of specimens to be compared should havegenerally similar gloss, texture, and (if not opa

24、que) thickness,and translucency.5.2 For yellowness measurement, this practice is limited tospecimens having dominant wavelength in the range 570 to580 nm, or Munsell hue approximately 2.5GY to 2.5Y. Forwhiteness measurement, this practice is limited to specimenshaving Munsell value greater than 8.3

25、(CIE Y greater than 65)and Munsell chroma no greater than 0.5 for B hues, 0.8 for Yhues, and 0.3 for all other hues (see 3.3.1).5.3 The combination of measurement and calculation lead-ing to indices of yellowness or whiteness is a psychophysicalprocess, that is, the procedures specified are designed

26、 toprovide numbers correlating with visual estimates made underspecified typical observing conditions. Because visual observ-ing conditions can vary widely, users should compare calcu-lated indices with visual estimates to ensure applicability.Some standards addressing the visual estimation of color

27、 andcolor difference are Practices D1535, D1729, E1360, andE1541, and Guide E1499.5.4 This practice does not cover the preparation ofspecimens, a procedure that may affect significantly the quan-tities measured. In general, specimens should be prepared andpresented for measurement in the manner that

28、 is standard forthe test being performed. Select enough specimens or specimenareas to provide an average result that is representative of eachsample to be tested. See Practice E1345.6. Yellowness Index6.1 This section contains two main parts: 6.2 Historicalbackground and 6.3 Calculation of currently

29、 recommendedYellowness Index. If the user wants to calculate the currentlyrecommended Yellowness Index (YI), it is recommended toskip directly to 6.3.6.2 BackgroundThe currently recommended equation forthe calculation of yellowness index is derived from an equationdue to Hunter (2) in 1942: YI =(AB)

30、/G, where A, B, and Gare, respectively, amber or red, blue, and green colorimeterreadings. Another version, used in the 1940s to 1960s fortransparent plastics (3, 4), was based on transmittances near theends of the visible wavelength region: YI = 100(T680 T420)/T560(with a factor of 100 introduced t

31、o give values of YI nearunity). This equation failed to account correctly for differencesin the spectral transmittance curves of such plastics, especiallyafter the adoption of ultraviolet light absorbers to improveweathering, and was soon abandoned. When, in 1957, ASTMsolicited new equations for cal

32、culating yellowness indices,Hunters equation was converted (5) into CIE tristimulus valueform by using Hunters approximate relations between colo-rimeter readings and those tristimulus values; the resultingequation, YI = 100(1.28X 1.06Z)/Y, was adopted for use inTest Method D1925 in 1962.6.2.1 In th

33、e original form of Test Method E313, an alterna-tive equation was recommended for a yellowness index. Interms of colorimeter readings, it was YI = 100(1 B/G). Itsderivation assumed that, because of the limitation of theconcept to yellow (or blue) colors, it was not necessary to takeaccount of variat

34、ions in the amber or red colorimeter reading A.This equation is no longer recommended.6.2.2 Significant Digits and PrecisionThe coefficients ofTest Method D1925 equation were rounded to the number ofdigits shown, commensurate with the precision of then-existingE313 1512color measurement instrumentat

35、ion. It was not intended thatmore significance should be attributed to values of YI than thatimplicit in this number of digits. As instrumentation wasimproved, however, it was found that some instruments unex-pectedly gave nonzero values of YI for clear air or the perfectreflecting diffuser. One sug

36、gested (1), p. 205) remedy for thispresumed failure of the equation was to increase the number ofdigits in the numerical coefficients from two to ten after thedecimal point, despite the obvious lack of significance of mostof these digits. With modern instrumentation, it is believed thattwo digits ad

37、ded to the coefficients in the original Test MethodD1925 equation suffice to bring the nonzero value of YI below0.0005 on average. The new coefficients are given to thisprecision in 6.2.3.6.2.3 Derivation of EquationsSeveral sets of coefficientsare involved in the derivation of the final equations r

38、ecom-mended for calculating yellowness indices. With themevaluated, it is possible to derive highly precise equations forboth the CIE 1931 standard observer and the 1964 supplemen-tary standard observer, in combination with either CIE standardilluminant C or D65. The results are given in Table 1.6.2

39、.3.1 The first set of coefficients required, consists of thetristimulus values Xn, Yn, and Znof the perfect reflectingdiffuser (or clear air) for the above observer-illuminant com-binations. These are established by the CIE, and for the presentderivation were taken from the tables of tristimulus wei

40、ghtingfactors in Practice E308.6.2.3.2 From these “white point” values, it is possible tocalculate the coefficients in Hunters equation relating tristimu-lus value X and colorimeter readings A and B: X=Xn-(FAA + FBB), thus improving on the approximation FA= 0.8and FB= 0.2 originally used.6.2.3.3 The

41、 coefficients in revised Test Method D1925equations for YI can be calculated, rounded, and adjusted in thelast retained significant digit to minimize the residual error inthe white point values. These coefficients are given in Table 1as CXand CZ. The tabulation of the residual white point errorcompl

42、etes the table.6.3 Calculation of Yellowness Index (YI)YI can be calcu-lated for either illuminant C or D65, and either the CIE 1931standard colorimetric observer (2), or the CIE 1964 standardcolorimetric observer (10).6.3.1 Use Eq 1 to calculate Yellowness Index (YI):YI 5 100CXX 2 CZZ!/Y (1)where X

43、, Y, Z are the measured tristimulus values of thespecimen calculated for either Illuminant C or D65, and eitherthe CIE 1931 standard colorimetric observer (2), or the CIE1964 standard colorimetric observer (10); and coefficients Cxand Czare selected from Table 2 for the chosen illuminant andobserver

44、.7. Whiteness Index7.1 BackgroundThe earliest equation for whiteness indexWI appears to be due to MacAdam (6) and related WI toexcitation purity. This and other equations utilizing the purityhave largely been abandoned. Judd (7) appears to have been thefirst to recognize that a whiteness index shoul

45、d incorporate twoterms, one based on the lightness of the specimen relative tothat of a preferred white, and the other describing the differ-ence in chromaticity between the specimen and that preferredwhite. Much debate has arisen over the years as to the natureof the preferred white, but at the pre

46、sent time the perfectreflecting diffuser is almost always adopted as that reference.7.1.1 In the original form of Test Method E313, the equationfor WI was based on the above premise and the use ofcolorimeter readings G and B only. It was found that thechromaticity factor GB required three to four ti

47、mes theweighting of the lightness factor G. Hence the equation waswritten WI=G4(GB)=4B 3G. This equation is nolonger recommended.7.2 CIE EquationsThe equations for whiteness recom-mended in this practice were derived and published (8) by theCIE. Two equations are given, one for the whiteness index W

48、Iand another for a tint index T. Their coefficients are given inTable 3. The CIE gave coefficients for both standard observersand Ill. D65; those for the 1931 observer and Ill. C were takenfrom the American Association of Textile Chemists and Col-orists (AATCC) method for WI(9); and those for the 19

49、64observer and Ill. C and Ill. D50were estimated by Subcommit-tee E12.04. Those for Ill. C and Ill. D50and both observers areunofficial and should be used for in-house comparisons only.7.2.1 Equation for Whiteness Index WI:WI 5 Y1WI, x!xn2 x!1WI, y!yn2 y!(2)TABLE 1 Quantities Used in the Earlier Forms of YellownessIndex EquationsQuantityCIE Standard Illuminant and Standard ObserverC, 1931 D65, 1931 C, 1964 D65, 1964Xn98.074 95.047 97.285 94.811Yn100.000 100.000 100.000 100.000Zn118.232 108.883 116.145 107.304FA0.7987 0.8105 0.7987 0.8103F

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1