ImageVerifierCode 换一换
格式:PDF , 页数:42 ,大小:505.54KB ,
资源ID:527511      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-527511.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM E384-2010 3125 Standard Test Method for Microindentation Hardness of Materials.pdf)为本站会员(bonesoil321)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM E384-2010 3125 Standard Test Method for Microindentation Hardness of Materials.pdf

1、Designation: E384 10Standard Test Method forMicroindentation Hardness of Materials1This standard is issued under the fixed designation E384; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A number in par

2、entheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.1. Scope*1.1 This test method covers determination of the Knoop andVickers hard

3、ness of materials, the verification of Knoop andVickers hardness testing machines, and the calibration ofstandardized Knoop and Vickers test blocks.1.2 This test method covers Knoop and Vickers hardnesstests made utilizing test forces in micro (9.807 3 10-3to 9.807N)(1to1000 gf ) and macro (9.807 to

4、 1176.68 N) ( 1kgto 120 kgf ) ranges.NOTE 1Previous versions of this standard limited test forces to 9.807N (1 kg).1.3 This test method includes all of the requirements toperform macro Vickers hardness tests as previously defined inTest Method E92, Standard Test Method for Vickers HardnessTesting.1.

5、4 This test method includes an analysis of the possiblesources of errors that can occur during Knoop and Vickerstesting and how these factors affect the accuracy, repeatability,and reproducibility of test results.NOTE 2While Committee E04 is primarily concerned with metals, thetest procedures descri

6、bed are applicable to other materials.1.5 UnitsWhen Knoop and Vickers hardness tests weredeveloped, the force levels were specified in units of grams (gf)and kilograms-force (kgf). This standard specifies the units offorce and length in the International System of Units (SI); thatis, force in Newton

7、s (N) and length in mm or m. However,because of the historical precedent and continued commonusage, force values in gf and kgf units are provided forinformation and much of the discussion in this standard as wellas the method of reporting the test results refers to these units.1.6 This standard does

8、 not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Stand

9、ards:2C1326 Test Method for Knoop Indentation Hardness ofAdvanced CeramicsC1327 Test Method for Vickers Indentation Hardness ofAdvanced CeramicsE3 Guide for Preparation of Metallographic SpecimensE7 Terminology Relating to MetallographyE29 Practice for Using Significant Digits in Test Data toDetermi

10、ne Conformance with SpecificationsE74 Practice of Calibration of Force-Measuring Instru-ments for Verifying the Force Indication of Testing Ma-chinesE92 Test Method for Vickers Hardness of Metallic Materi-alsE122 Practice for Calculating Sample Size to Estimate,With Specified Precision, the Average

11、for a Characteristicof a Lot or ProcessE140 Hardness Conversion Tables for Metals RelationshipAmong Brinell Hardness, Vickers Hardness, RockwellHardness, Superficial Hardness, Knoop Hardness, andScleroscope HardnessE175 Terminology of MicroscopyE177 Practice for Use of the Terms Precision and Bias i

12、nASTM Test MethodsE691 Practice for Conducting an Interlaboratory Study toDetermine the Precision of a Test MethodE766 Practice for Calibrating the Magnification of a Scan-ning Electron Microscope1This test method is under the jurisdiction of ASTM Committee E04 onMetallography and is the direct resp

13、onsibility of Subcommittee E04.05 on Micro-indentation Hardness Testing.With this revision the test method was expanded toinclude the requirements previously defined in E28.92, Standard Test Method forVickers Hardness Testing of Metallic Material that was under the jurisdiction ofE28.06Current editi

14、on approved Feb. 1, 2010. Published February 2010. Originallyapproved in 1969. Last previous edition approved in 2009 as E384 09. DOI:10.1520/E0384-10.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStan

15、dards volume information, refer to the standards Document Summary page onthe ASTM website.1*A Summary of Changes section appears at the end of this standard.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.2.2 ISO Standards:3ISO 6507-1

16、 Metallic MaterialsVickers hardness TestPart 1: Test MethodISO/IEC 17011 Conformity AssessmentGeneral Require-ments for Accreditation Bodies Accrediting ConformityAssessment Bodies.ISO/IEC 17025 General Requirements for the Competenceof Testing and Calibration Laboratories3. Terminology3.1 Definitio

17、nsFor the standard definitions of terms usedin this test method, see Terminology E7.3.2 Definitions of Terms Specific to This Standard:3.2.1 calibrating, vdetermining the values of the signifi-cant parameters by comparison with values indicated by areference instrument or by a set of reference stand

18、ards.3.2.2 Knoop hardness number, HK, nan expression ofhardness obtained by dividing the force applied to the Knoopindenter by the projected area of the permanent impressionmade by the indenter.3.2.3 Knoop indenter, na rhombic-based pyramidal-shaped diamond indenter with edge angles of /A = 172 308a

19、nd / B = 130 08 (see Fig. 2).3.2.4 microindentation hardness test, na hardness testusing a calibrated machine to force a diamond indenter ofspecific geometry into the surface of the material beingevaluated, in which the test forces are 9.807 3 10-3to 9.807 N(1 to 1000 gf) and the indentation diagona

20、l, or diagonals aremeasured with a light microscope after load removal; for anytest, it is assumed that the indentation does not undergo elasticrecovery after force removal. The test results are normally inthe Knoop or Vickers scales.3.2.5 macroindention hardness test, na hardness test us-ing a cali

21、brated machine to force an indenter of specificgeometry into the surface of the material being evaluated, inwhich the test forces are normally higher than 9.807 N (1 kgf).Macroindentation test scales include Vickers, Rockwell andBrinell.NOTE 3Use of the term microhardness should be avoided because i

22、timplies that the hardness, rather than the force or the indentation size, isvery low.3.2.6 verifying, vchecking or testing the instrument toassure conformance with the specification.3.2.7 Vickers hardness number, HV, nan expression ofhardness obtained by dividing the force applied to a Vickersinden

23、ter by the surface area of the permanent impression madeby the indenter.3.2.8 Vickers indenter, na square-based pyramidal-shapeddiamond indenter with face angles of 136 (see Fig. 1).3.2.9 scale, na specific combination of indenter (Knoopor Vickers) and the test force. For example, HV10 is a scaledef

24、ined as using a Vickers indenter and a 10kg test force andHK0.1 is a scale defined as using a Knoop indenter and a 100gftest force. See 5.8 for the proper reporting of the hardness leveland scale.3.3 FormulaeThe formulae presented in 5.5 and 5.6 forcalculating Knoop and Vickers hardness are based up

25、on anideal tester. The measured value of the Knoop and Vickershardness of a material is subjected to several sources of errors.Based on Eq 1-9, variations in the applied force, geometricalvariations between diamond indenters, and human errors inmeasuring indentation lengths can affect the calculated

26、 mate-rial hardness. The amount influence each of these parameters3Available from International Organization for Standardization (ISO), 1, ch. dela Voie-Creuse, Case postale 56, CH-1211, Geneva 20, Switzerland, http:/www.iso.org.FIG. 1 Vickers IndenterE384 102has on the calculated value of a Knoop o

27、r Vickers measurementis discussed in Section 10.4. Significance and Use4.1 Hardness tests have been found to be very useful formaterials evaluation, quality control of manufacturing pro-cesses and research and development efforts. Hardness, al-though empirical in nature, can be correlated to tensile

28、 strengthfor many metals, and is an indicator of wear resistance andductility.4.2 Microindentation hardness tests extend testing to mate-rials that are too thin or too small for macroindentationhardness tests. Microindentation hardness tests also allowspecific phases or constituents and regions or g

29、radients toosmall for macroindentation hardness testing to be evaluated.4.3 Because the Knoop and Vickers hardness will revealhardness variations that may exist within a material, a singletest value may not be representative of the bulk hardness.4.4 The Vickers indenter usually produces a geometrica

30、llysimilar indentation at all test forces. Except for tests at verylow forces that produce indentations with diagonals smallerthan about 25 m, the hardness number will be essentially thesame as produced by Vickers machines with test forces greaterthan 1 kgf, as long as the material being tested is r

31、easonablyhomogeneous. For isotropic materials, the two diagonals of aVickers indentation are equal in size. Recommendations forlow force microindentation testing can be found in AppendixX5.4.5 The Knoop indenter does not produce a geometricallysimilar indentation as a function of test force. Consequ

32、ently,the Knoop hardness will vary with test force. Due to itsrhombic shape, the indentation depth is shallower for a Knoopindentation compared to a Vickers indentation under identicaltest conditions. The two diagonals of a Knoop indentation aremarkedly different. Ideally, the long diagonal is 7.114

33、 timeslonger than the short diagonal, but this ratio is influenced byelastic recovery. Thus, the Knoop indenter is very useful forevaluating hardness gradients or thin coatings of sectionedsamples.5. Principle of Test5.1 In this test method, a Knoop or Vickers hardness numberis determined based on t

34、he formation of a relatively smallindentation made in the test surface of samples being evalu-ated.5.2 A Knoop or Vickers indenter, made from diamond ofspecific geometry, is pressed into the test specimen surface byan accurately controlled applied force using test machinesspecifically designed for s

35、uch work.5.3 Knoop and Vickers hardness testing is divided intomicro and macro-test force ranges as defined:Range Test ForceMicro Micro 9.807 3 10-3 to # 9.807N(1to# 1000 gf)Macro Macro 9.807 to # 1176.68 N ( 1 to # 120 kgf)5.3.1 Knoop scale testing is normally performed usingmicro-range test forces

36、 (1kg and less) while the Vickers scaleis used over both the micro and macro-ranges.NOTE 4The user should consult with the manufacturer before apply-ing test forces in the macro-ranges (over 1 kg) with diamond indenterspreviously used for micro-range testing. The diamond mount may not bestrong enoug

37、h to support the higher test forces and the diamond may notbe large enough to produce the larger indent sizes.5.4 The size of the indentation is measured using a lightmicroscope equipped with a filar type eyepiece, or other typeof measuring device (see Terminology E175). Micro-rangeindents are typic

38、ally measured in m (micrometers) andmacro-range indents are measured in mm. The formulas forboth units are given below.5.5 The Knoop hardness number is based upon the forcedivided by the projected area of the indentation5.5.1 For Knoop hardness testing, test loads are typically ingrams-force (gf) an

39、d indentation diagonals are in micrometersFIG. 2 Knoop IndenterE384 103(m). The Knoop hardness number, in terms of gf and m, iscalculated using the following:HK 5 1.000 3 1033 P/Ap! 5 1.000 3 1033 P/cp3 d2! (1)orHK 5 14229 3 P/d2(2)Indenter constant 5 cp5tan/B22 tan/A2(3)where:P = force, gf,d = leng

40、th of long diagonal, m2,Ap= projected area of indentation,/A = included longitudinal edge angle, 172 30/B = included transverse edge angle, 130 0 (see Fig. 2and,cp= indenter constant relating projected area of the in-dentation to the square of the length of the longdiagonal, ideally 0.07028.NOTE 5HK

41、 values for a 1-gf (9.807 3 103N) test force arecontained inAppendix X6. To obtain HK values when other test forces areemployed, multiply the HK value from Table X6.1for the d value by theactual test force, g.5.5.2 The Knoop hardness, in terms of kgf and mm, isdetermined as follows:HK 5 14.229 3 P1/

42、d12(4)where:P1= force, kgf, andd1= length of long diagonal, mm.5.5.3 The Knoop hardness reported with units of GPa isdetermined as follows:HK 5 0.014229 3 P2/d22(5)where:P2= force, N, andd2= length of the long diagonal of the indentation, mm.5.6 The Vickers hardness number is based upon the forcediv

43、ided by the surface area of the indentation.5.6.1 For the micro-range Vickers hardness test loads aretypically in grams-force (gf) and indentation diagonals are inmicrometers (m). The Vickers hardness number, in terms of gfand m, is calculated as follows:HV 5 1.000 3 1033 P/As5 2.000 3 1033 P sin a/

44、2!/d2(6)orHV 5 1854.4 3 P/d2(7)where:P = force, gf,As= surface area of the indentation, m2,d = mean diagonal length of the indentation, m, anda = face angle of the indenter, 136 0 (see Fig. 1).NOTE 6HV numbers for a 1-gf (9.807 3 103N) test load arecontained inAppendix X6. To obtain HV values when o

45、ther test forces areemployed, multiply the HV value from Table X6.2 for the d value by theactual test force, g.5.6.2 Macro range Vickers hardness is typically determinedusing kgf and mm and is calculated as follows:HV 5 1.8544 3 P1/d12(8)where:P1= force, kgf, andd1= mean diagonal length of the inden

46、tations, mm.5.6.3 The Vickers hardness reported with units of GPa isdetermined as follows:HV 5 0.0018544 3 P2/d22(9)where:P2= force, N, andd2= mean diagonal length of the indentations, mm.5.7 It is assumed that elastic recovery does not occur whenthe indenter is removed after the loading cycle. That

47、 is, it isassumed that the indentation retains the shape of the indenterafter the force is removed. In Knoop testing, it is assumed thatthe ratio of the long diagonal to the short diagonal of theimpression is the same as for the indenter.5.8 The symbols HK for Knoop hardness, and HV forVickers hardn

48、ess shall be used with the reported numericalvalues.5.8.1 For this standard, the hardness test results can bereported in several different ways. For example, if the Knoophardness was found to be 400, and the test force was 100 gf, thetest results may be reported as follows:5.8.1.1 In the kilogram fo

49、rce system: 400 HK 0.1.5.8.1.2 In the gram force system: 400 HK 100 gf.5.8.1.3 In the SI system: 3.92 GPa.5.8.1.4 For nonstandard dwell times, other than 10 to 15 s,the hardness would be reported as 400 HK 0.1 /22. In this case,22 would be the actual time of full load dwell time in seconds.5.9 The reported Knoop and Vickers hardness number shallbe reported rounded to three significant digits in accordancewith Practice E29 (for example, 725 HV 0.1, 99.2 HK 1).6. Apparatus6.1 Test MachineThe test machine shall support the testspecimen an

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1