ImageVerifierCode 换一换
格式:PDF , 页数:10 ,大小:166.83KB ,
资源ID:528027      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-528027.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM E1154-1989(2008) Standard Specification for Piston or Plunger Operated Volumetric Apparatus《活塞或柱塞操作的容量测量装置用标准规范》.pdf)为本站会员(花仙子)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM E1154-1989(2008) Standard Specification for Piston or Plunger Operated Volumetric Apparatus《活塞或柱塞操作的容量测量装置用标准规范》.pdf

1、Designation: E 1154 89 (Reapproved 2008)Standard Specification forPiston or Plunger Operated Volumetric Apparatus1This standard is issued under the fixed designation E 1154; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year

2、of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This specification covers requirements, operating con-ditions, and test methods for piston or plunger operatedvolum

3、etric apparatus (POVA).1.2 This specification includes specifications applicable forall types of POVA or those given by the manufacturer. Thefollowing precautionary caveat pertains only to the test methodportion, Section 13, of this specification: This standard doesnot purport to address all of the

4、safety concerns, if any,associated with its use. It is the responsibility of the user of thisstandard to establish appropriate safety and health practicesand determine the applicability of regulatory limitations priorto use.2. Referenced Documents2.1 ISO Documents:2ISO 3534 StatisticsVocabulary and

5、SymbolsISO 653 Long Solid-Stem Thermometers for Precision UseISO 655 Long Enclosed-Scale Thermometers for PrecisionUseISO 4787 Laboratory GlasswareVolumetric GlasswareMethods for Testing and Use3. Terminology3.1 Definitions of Terms Specific to This Standard:3.1.1 accuracy3the accuracy of an instrum

6、ent is thecloseness of agreement between the nominal volume and themean volume, obtained by applying the test procedure speci-fied in Section 13 of this specification. It is quantified by theinaccuracy of the mean.3.1.2 dead volumethe dead volume is that part of the totalliquid volume, held in the o

7、perational part of the device, whichis not delivered.3.1.2.1 DiscussionThe dead volume should not be con-fused with the dead space of an air displacement instrument.3.1.3 disposablethose parts of an instrument that areintended to be used once only and then discarded. Disposableparts are generally in

8、tended for use in applications wheresample carryover is intolerable.3.1.4 maximum errorthe maximum difference betweenthe nominal volume and any single individual volume obtainedby applying the test procedure specified in Section 13 of thisISO Standard.3.1.5 maximum expectable errorwith more than 95

9、%probability, the maximum expectable error is calculated asfollows:61ET1 1 2s! (1)where:ET= inaccuracy of the mean, ands = standard deviation from the repeatability test inSection 13.3.1.6 nominal volume(s)the stated volume(s) for whichperformance is specified.3.1.7 unit of volumethe millilitre or t

10、he microlitre, that areaccepted substitutes for the cubic centimetre or cubic millime-tre.3.1.7.1 DiscussionIt is recommended that volumes shouldbe specified in microlitres up to 999 L, and in millilitres from1 mL.3.1.8 piston or plunger operated volumetric apparatus(POVA)the volume of liquid to be

11、measured with POVA isdefined by one or more strokes of one or more pistons orplungers. POVA may be operated manually or mechanically(for example, electrically, pneumatically or by hydrostaticpressure).3.1.8.1 DiscussionIn the following text the word8 pistonmeans8 piston or plunger.3.1.9 precision3th

12、e closeness of agreement between theindividual volumes obtained by applying the test procedurespecified in this specification. It is quantified by the impreci-sion.3.1.9.1 DiscussionThe test procedure specified gives onlya measure of the repeatability (see ISO 3534) under controlledconditions.3.1.10

13、 reusablethose parts of an instrument that are meantto be used more than once.As the reusability of some parts canrarely be quantified, any institution or individual who reuses areusable part must see to its safety and effectiveness. Reusableparts are generally intended for use in applications where

14、sample carryover is tolerable, or can be adequately prevented.1This specification is under the jurisdiction of ASTM Committee E41 onLaboratory Apparatus and is the direct responsibility of Subcommittee E41.06 onWeighing Devices.Current edition approved Nov. 1, 2008. Published January 2009. Originall

15、yapproved in 1987. Last previous edition approved in 2003 as E 1154-89 (2003).2Available from American National Standards Institute (ANSI), 25 W. 43rd St.,4th Floor, New York, NY 10036, http:/www.ansi.org.3These definitions apply only in the cases where the distributions are Gaussian.1Copyright ASTM

16、 International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.3.1.11 sample carryoverthat portion of the sample that isretained in the instrument and that may affect subsequentsamples.3.1.12 stated featureany feature claimed by the manufac-turer.3.1.13 reference

17、 temperaturethe temperature at which theinstrument is designed to deliver its nominal volume(s).3.1.13.1 DiscussionAt that temperature the closest agree-ment between manufacturers performance claims and testresults may be expected.3.1.14 reference temperature rangethat temperaturerange for which the

18、 tolerances for accuracy are specified.3.1.15 working rangethat part (of the total range) forwhich manufacturers performance specifications are given.3.1.16 working temperature rangethat range of tempera-tures for which manufacturers performance specifications aregiven.4. Classification4.1 Types of

19、POVAPiston or plunger operated volumetricapparatus (POVA) are classified as follows:4.1.1 PipetteA measuring instrument for the transfer of apredetermined volume of liquid from one vessel to another. Itis not connected to a reservoir.4.1.2 DispenserA measuring instrument for deliveringpredetermined

20、volumes of liquid from a reservoir. The reser-voir may be integrated with the instrument or connectedexternally.4.1.3 DilutorAmeasuring instrument for taking up differ-ent liquids (for example, sample and diluent) and deliveringthem in combination so as to comprise a predetermined ratio,or predeterm

21、ined volumes, or both. The reservoir of diluentmay be integrated with the instrument or connected externally.4.1.4 Displacement BuretA measuring instrument fromwhich the volume delivered is determined by an externalindicator. The volume delivered can then be read.4.2 Types of Displacement:4.2.1 Disp

22、lacement with an air interface (“air displace-ment”). The delivered liquid is displaced by an air interface(indirect action), (see Figs. 1 and 2).4.2.2 Displacement without an air interface (“positive dis-placement”). The delivered liquid is displaced either by aliquid interface (indirect action) or

23、 by actual contact with thepiston (direct action), (see Fig. 3 and Fig. 4).5. Performance Requirements5.1 Performance Tolerances:5.1.1 Performance tolerances specified for POVA are meantto include any thermal drift effect upon the accuracy andprecision attributable to hand-transmitted heat during no

24、rmaluse. It is, therefore, important that the instrument beingevaluated according to the referenced procedure not be pre-conditioned (warmed) by recent handling, nor isolated fromnormal handwarming during the test series (30 or 10 cycles).5.1.2 Volumetric performance tolerances are not specified int

25、his specification. The manufacturer shall specify the perfor-mance tolerances in terms of the accuracy of the mean ( EC%)and coefficient of variation (CVc%). Values shall be given forthe minimum and maximum volumes of the working range, aswell as for any intermediate volumes in the series 1, 2, 5, 1

26、0 5.2 The reference temperature recommended for all POVAis 21.5C, which is the mid-point of the reference temperaturerange, (see section 3.1.14). The use of another referencetemperature must be stated by the manufacturer.5.2.1 Reference Temperature Range The reference tem-perature range for all POVA

27、 shall be 19 to 24C, (see section3.1.13 and section 3.1.14).5.3 Removable Parts:5.3.1 The volumetric performance of POVA to be used withremovable parts can depend to a large extent on the design,material, and workmanship of those parts. The test proceduresdescribed can give information only about th

28、e performance ofthe instruments together with the removable parts actuallyused.5.3.2 Single-Measurement TestThe single-measurementment test requires either 30 or 10 randomly selected removableparts, one for each sample of the series. This test evaluates theinstruments performance and component of im

29、precision dueto the variation of these parts.5.3.3 Replicate-Delivery TestThe replicate delivery testuses one removable part for the 30 or 10 sample series. Thistest evaluates the instruments performance and the componentof imprecision due to the reuse of this part.5.4 DurabilityAny claim by a manuf

30、acturer that an in-strument is resistant to any defined conditions (for example,sterilization and chemical exposure) shall be understood insuch a way that even long term or repeated exposure to thoseconditions (as specified by the manufacturer) will not affect therated performance of the instrument.

31、FIG. 1 Displacement With an Air Interface (Air Displacement)E 1154 89 (2008)26. General Operating Conditions6.1 Relationship to PerformanceThe specification of op-erating procedures is critical to the proper functioning of theinstruments, and determines their ability to perform withinspecified toler

32、ances. Changes in the operating mode candramatically alter the results of analyses. Most instruments arecalibrated for certain operating modes; another manner of usemay result in a change in the accuracy or precision, or both.6.2 DelineationIt is the manufacturers responsibility todelineate the mode

33、s of operation in instruction manuals and tostate for which of the modes the instrument is calibrated.6.3 PreparationThe manufacturer shall provide instruc-tions necessary for the preparation of the instrument for use inparticular operating modes (for example, mounting of remov-able parts, method of

34、 volume adjustment, temperature equa-tion, isothermal requirements, testing of piston action, lubrica-tion, priming, purging or prerinsing information, etc.).7. Operating Conditions for Pipetters7.1 Two common modes of operation are in use, the forwardmode (sometimes referred to as normal mode), and

35、 the reversemode (usable with two-component stroke mechanism systemsonly), (see Fig. 3 and Fig. 4).7.1.1 In general, the precision of the repetitive use of theforward mode relies upon the precise draining by air pressure(in the case of air displacement pipetters) or internal wiping ofthe pipet barre

36、l or tip (in the case of displacement pipetters).Ascompared to the reverse mode, the forward mode is relativelyinsensitive to variations in the speed of the piston or plunger inthe dispensing action. Positive displacement instruments withrelatively small delivery orifices are generally less sensitiv

37、e tochange in accuracy when handling liquids with high wetabilitycharacteristics.7.1.2 Air displacement pipetters with two-component strokemechanisms are generally less sensitive than air displacementFIG. 2 Displacement Without an Air Interface (Positive Displacement)FIG. 3 Pipetter Mode of Operatio

38、n (Forward Mode)FIG. 4 Pipetter Mode of Operation (Reverse Mode)E 1154 89 (2008)3pipetters with one-stroke mechanisms positive displacementpipetters to errors introduced by slight variations of thedynamics of the liquid interface break at the end of the pipet orpipet tip during the dispensing action

39、, due to the purging actionof the air “blow-out” stroke potential.7.1.3 The use of the reverse mode with two-componentstroke mechanism pipetters may be more advantageous whenliquids that are difficult to handle in the forward mode areencountered.7.2 Forward Mode, General Format:7.2.1 PreparationPipe

40、tter and environment shall be iso-thermal. Volume settings and the mounting of removable ordisposable pipet tips shall be accomplished according to themanufacturers directions.7.2.2 Aspiration:7.2.2.1 Hold the instrument in a vertical position, or asprescribed by the manufacturer.7.2.2.2 In the case

41、 of two-component stroke systems, de-press the push button smoothly to the intermediate stopposition.7.2.2.3 In the case of one-component stroke systems, de-press the push-button smoothly to the bottom stop position.7.2.2.4 Immerse the pipet or pipet tip into the liquid to bepipetted to, and maintai

42、n it at the following depth:Volume, L Immersion Depth, mm1to100 2to3101 to 1000 2 to 41.1to10mL 3to67.2.2.5 Allow the push-button to move up to the top stopposition slowly and smoothly.7.2.2.6 For air displacement pipetters, observe a wait of 1 s.7.2.2.7 Withdraw the pipet or pipet tip smoothly by l

43、iftingstraight up either from the center of the liquid surface in thevessel, or up the sidewall of the vessel.NOTE 1No further liquid contact of the pipet or pipet tip is allowedonce the liquid interface is broken.7.2.2.8 Wipe the pipet or pipet tip only if there are extrane-ous droplets. Contact wi

44、th the orifice of the pipet or pipet tip,especially with absorbent material, must be avoided, as largecomponents of random or systematic error may be introduced.7.2.3 DeliveryPlace the pipet or pipet tip at an angle (10to 45, or as prescribed by the manufacturer) against the insidewall of the receiv

45、ing vessel.7.2.3.1 For two-component stroke systems, depress thepush-button smoothly to the intermediate stop position.After await of 1 s, depress the push-button to the bottom stop positionas the pipet or pipet tip end is removed from the sidewall byeither a sliding action up the wall or a movement

46、 away fromthe wall (“touching off”).7.2.3.2 For one-component stroke systems, depress thepush-button smoothly to the bottom stop position as the pipetor pipet tip end is removed from the sidewall by either a slidingaction up the wall, or a movement away from the wall.7.2.3.3 Allow the push-button to

47、 move up to the top stopposition.7.3 Reverse Mode, General Format:7.3.1 PreparationPrepare in accordance with 7.2.1, for-ward mode.7.3.2 AspirationAspirate in accordance with 7.2.2, exceptthat the push-button is depressed to the bottom stop positionprior to pipet tip immersion.7.3.3 Delivery:7.3.3.1

48、 Place the pipet or pipet tip at an angle (10 to 45, oras prescribed by the manufacturer) against the inside wall ofthe receiving vessel.7.3.3.2 Depress the push-button smoothly to the intermedi-ate stop position.7.3.3.3 After a 1-s wait, remove the pipet or pipet tip fromthe sidewall, in accordance

49、 with 7.2.3.7.3.3.4 In the case of the pipet tip being reused, allow thepush-button to remain in the intermediate stop position forsubsequent immersion for the next pipetting cycle. In the caseof the pipet tip to be changed, allow the push-button to returnto the top stop position.NOTE 2Top and bottom stop positions, as described in the proceduresabove, are not meant to include auxiliary stroke positions (for example, fortip ejection).7.4 Prerinsing (Forward Mode):7.4.1 Prerinsing is the action of precoating the inside of thel

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1