1、Designation: E 1360 05Standard Practice forSpecifying Color by Using the Optical Society of AmericaUniform Color Scales System1This standard is issued under the fixed designation E 1360; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revisi
2、on, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon (e) indicates an editorial change since the last revision or reapproval.INTRODUCTIONThe Optical Society ofAmerica Uniform Color Scales (OSA-UCS) were developed by a committeeof the Opti
3、cal Society ofAmerica in the years between 1947 and 1974 in an effort to provide a systemand a set of samples that represent the closest possible approximation to equal visual spacing (1).2Thesystem is defined by a set of equations derived from the results of visual scaling experiments andrelated to
4、 the 1964 CIE system. The OSA sample set consisted of 558 atlas samples that fell at thelattice points of a rhombohedral close-packed arrangement within the color space defined by theequations. The unit in this spacing is a cuboctahedron, each color being surrounded by twelveequidistant nearest neig
5、hbors. See Fig. 1 and Fig. 2. Fig. 3 shows a OSA-UCS lightness plane plottedon the CIE 1964 chromaticity diagram. The OSA-UCS system is described in Appendix X1.The system is independent of the OSA-UCS atlas samples, and other groups of samples could bechosen within the defined color space; however,
6、 for the visual determination of colors described in thisstandard, the OSA set of samples is used.1. Scope1.1 This practice provides a means for specifying the colorsof objects in terms of the Optical Society of America UniformColor Scales. Both computational and visual methods areincluded. The prac
7、tice is limited to opaque objects, such aspainted surfaces, viewed in daylight by an observer havingnormal color vision.1.2 This practice does not cover the preparation of speci-mens. If the preparation of specimens is required in conjunc-tion with this practice, a mutually agreed upon procedure sha
8、llbe established.2. Referenced Documents2.1 ASTM Standards:3D 1535 Practice for Specifying Color by the Munsell Sys-temD 1729 Practice for Visual Appraisal of Colors and ColorDifferences of Diffusely-Illuminated Opaque MaterialsE 284 Terminology of AppearanceE 308 Practice for Computing the Colors o
9、f Objects byUsing the CIE System3E 1164 Practice for Obtaining Spectrophotometric Data forObject-Color Evaluation3. Terminology3.1 Definitions of Terms Specific to This Standard:3.1.1 chromaticness, nan attribute of a visual sensationcombining hue and chroma; the visual correlate of the colori-metri
10、c quantity chomaticity.3.1.2 hue, nthe attribute of color perception by means ofwhich an object is judged to be red, yellow, green, blue, orintermediate between some adjacent pair of these. In theOSA-UCS system each hue is denoted by its angle within a360 circle beginning in the yellow direction on
11、the right handside of the hue circle and proceeding counterclockwise throughthe greens, blues, and reds to return to the yellow hue, 360, onthe + j axis.3.1.3 OSA-UCS color system, nOptical Society ofAmerica Uniform Color Scales color order system based onequality of visual spacing, which uses the l
12、ightness scale 6Land the opponent-color scales 6j (yellowness-blueness) and 6g (greenness-redness).Acolor in the OSA-UCS system may be1This practice is under the jurisdiction of ASTM Committee E12 on Color andAppearance and is the direct responsibility of Subcommittee E12.07 on Color OrderSystems.Cu
13、rrent edition approved June 1, 2005. Published June 2005. Originallyapproved in 1990. Last previous edition approved in 2000 as E 1360 90 (2000)e1.2The boldface numbers in parentheses refer to a list of references at the end ofthis practice.3For referenced ASTM standards, visit the ASTM website, www
14、.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.descr
15、ibed by its L, j, g notation or by its lightness, L; hue angle,hOSA, and chroma, cOSA, designation.NOTE 1The conventional terms yellowness, greenness, blueness, andredness are used throughout this practice for convenience. However, thisdoes not imply that the j and g axes indicate the locations of t
16、hecorresponding unitary hues: The + j axis closely approximates the direc-tion toward unitary yellow; but the + g axis divides the green and blueregions, the j axis divides the blue and purple regions, and the g axislocates pinks and magentas. It is probably best to think of j and g asabstract symbo
17、ls unassociated with color names (2).3.1.4 OSA-UCS samples, nthe Optical Society of Ameri-cas physical exemplification of the OSA-UCS color system,which consisted of 558 samples displayed in a face-centeredlattice in three-dimensional space such that each interiorsample has 12 nearest neighbors at e
18、qual intervals from it. Thisconfiguration is sometimes referred to as a cuboctahedral orrhombohedral lattice.3.2 Definitions:3.2.1 The definitions in Practice D 1535 and TerminologyE 284 are applicable to this practice.4. Summary of Practice4.1 Computation MethodCIE 1964 tristimulus values forstanda
19、rd illuminant D65and the 1964 supplementary (10)standard observer are obtained from spectrophotometric orcolorimetric measurements. See Practice E 308 and PracticeE 1164. Transformation equations (3) from CIE 1964 tristimu-lus values to OSA-UCS notations are given in Section 7, andthe OSA-UCS notati
20、ons and CIE specifications of the OSAatlas samples are given in Table 1.4.2 Visual MethodObservers must have normal colorvision. Specimens should be viewed on an essentially nonse-lective gray background of 30 % luminous reflectance, equiva-lent to the OSA-UCS notation L=0,j=0,g=0, abbreviatedas (0,
21、0,0), and illuminated with natural or artificial daylight.OSA-UCS atlas samples are used as references in judgingtest-specimen color.5. Significance and Use5.1 Notational systems that specify and identify colors haveproved to be very useful. This practice describes how to assignNOTE 1Cuboctahedron s
22、howing location of L, j, and g axes throughits center and the locations and L, j, g coordinates of the center point andits 12 nearest neighbors. The lattice of the OSA-UCS system is derived byextending this unit in all directions to the extremes of color space. In thisdrawing horizontal nearest-neig
23、hbor planes are emphasized with heavylines. From Billmeyer, F. W., Jr., “Survey of Color Order Systems,” ColorResearch and Application, Vol 12, (10). Copyright r 1987, John Wiley see Practice E 308 and Practice E 1164 for an indicationof what this may be. Any additional contribution due to thecalcul
24、ations of this method should be negligible.10.2 The precision and bias of the visual method will bedetermined.TABLE 3hOSA,Equation ofHue LineL, j, g of Atlas SamplesYellow to Green Quadrant360, 0Aj 0, g = 0 4,2,0; 4,4,0; 4,6,0; 4,8,0; 4,10,0; 4,12,0; 2,2,0; 2,4,0; 2,6,0; 2,8,0; 2,10,0; 1,1,0; 1,2,0;
25、 0.1,0; 0,2,0; 0,3,0; 0,4,0; 0,6,0;0,8,0; 1,1,0; 1,2,0; 2,2,0; 2,4,0; , 6,0; 4,2,0; 4,4,0; 6,2,05 j11g=0 3,11,16 j 9g = 0 3,9,1; 1,9,18 j 7g = 0 3,7,1; 1,7,1; 1,7,111 j 5g = 0 5,5,1; 3,5,1; 2,10,2; 1.5,1; 0.5,2.5,0.5; 0.5,2.5,0.5; 1,5,1; 3,5,114 j 4g = 0 4,8,2; 2,8,2; 0,8,218 j 3g = 0 5,3,1; 4,6,2;
26、3,3,1; 3,9,3; 2,6,2; 1.5,1.5,0.5; 1,3,1; 1,9,3; 0.5,1.5,0.5;0,6,2; 0.5,1.5,0.5; 1,3,1; 1.5,1.5,0.5; 2,6,2; 3,3,1; 5,3,123 3j 7g = 0 3,7,3; 1,7,3; 1,7,3;27 j 2g = 0 4,4,2; 2,4,2; 2,8,4; 1,2,1; 0,2,1; 0,4,2; 0,8,4; 1,2,1; 2,4,2; 4,4,231 3j 5g = 0 3,5,3; 1,5,3; 1,5,3; 3,5,334 2j 3g = 0 2,6,4; 0,6,4; 2,
27、6,436 5j 7g = 0 1,7,5; 1,7,545 jg=0 5,1,1;4,4,4;4,2,2;3,1,1;3,3,3;2,2,2;2,4,4;1.5,0.5,0.5;1.5,1.5,1.5;1,1,1;1,3,3;1,5,5;0.5,0.5,0.5;0.5,1.5,1.5;0,1,1;0,2,2; 0,4,4; 0.5,0.5,0.5; 0.5,1.5,1.5; 1,1,1; 1,3,3; 1,5,5; 1.5,0.5,0.5; 1.5,1.5,1.5; 2,2,2; 2,4,4; 3,1,1; 3,3,3; 3,5,5; 4,2,2; 4,4,4; 5,1,1; 5,3,3;
28、6,2,2; 7,1,156 3j 2g = 0 0,4,659 5j 3g = 0 1,3,5; 1,3,5; 3,3,563 2jg=0 4,2,4;2,2,4;1,1,2;0,1,2;0,2,4;1,1,2;2,2,4;4,2,472 3jg=0 3,1,3;2,2,6;1.5,0.5,1.5;1,1,3;0.5,0.5,1.5;0,2,6;0.5,0.5,1.5;1,1,3;1.5,0.5,1.5;2,2,6;3,1,3;5,1,379 5jg=0 3,1,5;1,1,5;0.5,0.5,2.5;0.5,0.5,2.5;1,1,5;3,1,5Green to Blue Quadrant
29、90 j = 0, g 0 4,0,2; 4,0,4; 2,0,2; 2,0,4; 2,0,6; 1,0,1; 1,0,2; 0,0,1; 0,0,2; 0,0,3; 0,0,4;0,0,6; 1,0,1; 1,0,2; 2,0,2; 2,0,4; 2,0,6; 4,0,2; 4,0,4; 6,0,2101 5j+g=0 1,1,5;0.5,0.5,2.5;0.5,0.5,2.5;1,1,5;3,1,5108 3j+g=0 3,1,3;1.5,0.5,1.5;1,1,3;0.5,0.5,1.5;0.5,0.5,1.5;1,1,3;1.5,0.5,1.5;2,2,6;3,1,3;5,1,3117
30、 2j+g=0 2,2,4;1,1,2;0,1,2;0,2,4;1,1,2;2,2,4;4,2,4121 5j + 3g = 0 1,3,5; 1,3,5; 3,3,5135 j+g=0 5,1,1;4,2,2;3,1,1;3,3,3;2,2,2;2,4,4;1.5,0.5,0.5;1.5,1.5,1.5;1,1,1;1,3,3;0.5,0.5,0.5;0.5,1.5,1.5;0,1,1;0,2,2;0,4,4; 0.5,0.5,0.5; 0.5,1.5,1.5; 1,1,1; 1,3,3; 1.5,0.5,0.5; 1.5,1.5,1.5; 2,2,2; 2,4,4; 3,1,1; 3,3,
31、3; 4,2,2; 4,4,4; 5,1,1; 5,3,3; 6,2,2; 7,1,1149 3j + 5g = 0 1,5,3; 1,5,3; 3,5,3; 5,5,3153 j + 2g = 0 2,4,2; 1,2,1; 0,2,1; 0,4,2; 1,2,1; 2,4,2; 4,4,2; 6,4,2162 j + 3g = 0 3,3,1; 1.5,1.5,0.5; 1,3,1; 0.5,1.5,0.5;0,6,2; 0.5,1.5,0.5; 1,3,1; 1.5,1.5,0.5; 2,6,2; 3,3,1; 5,3,1; 7,3,1169 j + 5g = 0 1,5,1; 0.5,
32、2.5,0.5; 0.5,2.5,0.5; 1,5,1; 3,5,1; 5,5,1Blue to Red Quadrant180 j 0, g = 0 4,2,0; 2,2,0; 2,4,0; 1,1,0; 1,2,0; 0,1,0; 0,2,0; 0,3,0; 0,4,0;0,6,0; 1,1,0; 1,2,0; 2,2,0; 2,4,0; 2,6,0; 4,2,0; 4,4,0; 6,2,0; 6,4,0191 j 5g = 0 0.5,2.5,0.5; 0.5,2.5,0.5; 1,5,1; 3,5,1; 5,5,1198 j 3g = 0 3,3,1; 1.5,1.5,0.5; 1,3
33、,1;0.5,1.5,0.5; 0.5,1.5,0.5; 1,3,1; 1.5,1.5,0.5; 3,3,1; 5,3,1; 7,3,1207 j 2g = 0 1,2,1; 0,2,1; 0,4,2; 1,2,1; 2,4,2; 4,4,2; 6,4,2225 jg=0 5,1,1;4,2,2;3,1,1;2,2,2;1.5,0.5,0.5;1.5,1.5,1.5;1,1,1;1,3,3;0.5,0.5,0.5;0.5,1.5,1.5;0,1,1;0,2,2; 0.5,0.5,0.5; 0.5,1.5,1.5; 1,1,1; 1,3,3; 1.5,0.5,0.5; 1.5,1.5,1.5;
34、2,2,2; 3,1,1; 3,3,3; 4,2,2; 5,1,1; 5,3,3; 6,2,2; 7,1,1239 5j 3g = 0 3,3,5243 2jg=0 2,2,4;1,1,2;0,1,2;0,2,4;1,1,2;2,2,4;4,2,4;6,2,4252 3jg=0 3,1,3;1.5,0.5,1.5;1,1,3;0.5,0.5,1.5; 0.5,0.5,1.5; 1,1,3; 1.5,0.5,1.5; 2,2,6; 3,1,3; 5,1,3259 5jg=0 3,1,5;1,1,5;0.5,0.5,2.5;0.5,0.5,2.5;1,1,5;3,1,5;5,1,5262 7jg=
35、0 1,1,7;3,1,7Red to Yellow QuadrantE13600510TABLE 3 ContinuedhOSA,Equation ofHue LineL, j, g of Atlas Samples270 j = 0, g 0 4,0,2; 4,0,4; 2,0,2; 2,0,4; 2,0,6; 1,0,1; 1,0,2; 0,0,1; 0,0,2; 0,0,3; 0,0,4; 0,0,6;0,0,8; 1,0,1; 1,0,2; 2,0,2; 2,0,4; 2,0,6; 2,0,8; 2,0,10; 4,0,2; 4,0,4; 4,0,6; 6,0,2; 6,0,4; 6
36、,0,6276 9j+g=0 1,1,9;3,1,9278 7j+g=0 1,1,7;1,1,7;3,1,7;5,1,7281 5j+g=0 3,1,5;1,1,5;0.5,0.5,2.5;0.5,0.5,2.5;1,1,5;2,2,10; 3,1,5; 5,1,5284 4j+g=0 0,2,8;2,2,8;4,2,8288 3j+g=0 3,1,3;2,2,6;1.5,0.5;1.5;1,1,3;1,3,9;0.5,0.5,1.5;0,2,6; 0.5,0.5,1.5; 1,1,3; 1,3,9; 1.5,0.5,1.5; 2,2,6; 3,1,3; 3,3,9; 4,2,6; 5,1,3
37、; 6,2,6292 5j + 2g = 0 2,4,10293 7j + 3g = 0 1,3,7; 1,3,7; 3,3,7; 5,3,7297 2j+g=0 4,2,4;2,2,4;1,1,2;0,1,2;0,2,4;0,4,8;1,1,2;2,2,4;2,4,8;4,2,4;4,4,8;6,2,4299 9j + 5g = 0 1,5,9301 5j + 3g = 0 3,3,5; 1,3,5; 1,3,5; 2,6,10; 3,3,5; 5,3,5304 3j + 2g = 0 2,4,6; 0,4,6; 2,4,6; 4,4,6306 7j + 3g = 0 1,5,7; 1,5,
38、7; 3,5,7307 4j + 3g = 0 0,6,8; 2,6,8308 9j + 7g = 0 1,7,9315 j+g=0 5,1,1;4,2,2;4,4,4;3,1,1;3,3,3;3,5,5;2,2,2;2,4,4;2,6,6;1.5,0.5,0.5;1.5,1.5,1.5;1,1,1;1,3,3;1,5,5;1,7,7; 0.5,0.5,0.5; 0.5,1.5,1.5; 0,1,1; 0,2,2; 0,4,4; 0,6,6; 0,8,8; 0.5,0.5,0.5; 0.5,1.5,1.5; 1,1,1; 1,3,3; 1,5,5; 1,7,7; 1.5,0.5,0.5; 1.
39、5,1.5,1.5; 2,2,2; 2,4,4; 2,6,6; 3,1,1; 3,3,3; 3,5,5; 4,2,2; 4,4,4; 5,1,1; 5,3,3; 6,2,2; 7,1,1322 7j + 9g = 0 1,9,7323 3j + 4g = 0 2,8,6; 0,8,6324 5j + 7g = 0 3,7,5; 1,7,5; 1,7,5326 2j + 3g = 0 4,6,4; 2,6,4; 0,6,4; 2,6,4329 3j + 5g = 0 3,5,3; 2,10,6; 1,5,3; 1,5,3; 3,5,3331 5j + 9g = 0 3,9,5; 1,9,5333
40、 j + 2g = 0 4,4,2; 2,4,2; 2,8,4; 1,2,1; 0,2,1; 0,4,2; 0,8,4; 1,2,1; 2,4,2; 4,4,2337 3j + 7g = 0 3,7,3; 1,7,3; 1,7,3338 2j + 5g = 0 2,10,4342 j + 3g = 0 5,3,1; 4,6,2; 3,3,1; 3,9,3; 2,6,2; 1.5,1.5,0.5; 1.3,1; 1,9,3; 0.5,1.5,0.5;0,6,2; 0.5,1.5,0.5; 1,3,1; 1.5,1.5,0.5; 2,6,2; 3,3,1; 5,3,1345 3j + 11g =
41、0 3,11,3346 j + 4g = 0 4,8,2; 2,8,2; 0,8,2349 j + 5g = 0 5,5,1; 4,10,2; 3,5,1; 2,10,2; 1,5,1; 0.5,2.5,0.5; 0.5,2.5,0.5; 1,5,1; 3,5,1352 j + 7g = 0 3,7,1; 1,7,1; 1,7,1354 j + 9g = 0 3,9,1; 1,9,1355 j + 11g = 0 3,11,1AHue angles of 0 and 360 represent, on a closed hue circle, the same color, in this c
42、ase yellow. hOSA=0does not represent“ no hue” or the absence of hue.11. Keywords11.1 color; Optical Society of America; Optical Society ofAmerica Uniform Color Scales; OSA-UCS; Uniform ColorScalesAPPENDIXES(Nonmandatory Information)X1. DESCRIPTION OF OSA-UCS SYSTEMX1.1 An atlas of OSA-UCS samples ha
43、d been created for,and had been available from, the Optical Society of America4.The painted samples contained in the atlas closely represent,when viewed by observers with normal color vision underdaylight illumination (D65) and on a gray surround of 30 %luminous reflectance, the colors of the OSA-UC
44、S as specifiedby the CIE 1964 XYZcolor coordinates for standardilluminant D65given in Table 1.X1.2 All colors of medium lightness (approximately 30 %luminous reflectance) are represented by points on the squarelattice of the horizontal plane L = 0. The planes parallel to andabove L = 0 are denoted b
45、y L =1,L = 2, etc. The planesparallel to and below L = 0 are denoted by L = 1, L = 2,etc.There are only a few points on the planes L = 5 and L =7representing colors that are reproducible by stable paint mix-tures.X1.3 In each plane of constant lightness (L), latticecoordinates (j, g) are used to ide
46、ntify the lattice points. Both jand g are zero for grays. The coordinates j and g are points ontwo axes perpendicular to one another on a constant-lightnessE13600511plane. One of these axes, j, passes from yellow through thecentral gray to blue, while the other axis, g, passes from greenthrough the central gray to red. The yellow half of one axis ofthe lightness plane consists of increasing positive values of jcoupled with zero values of g. The blue half of that axis isindicated by negative values
copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1