ImageVerifierCode 换一换
格式:PDF , 页数:8 ,大小:129.17KB ,
资源ID:528662      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-528662.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM E1419 E1419M-2015a Standard Practice for Examination of Seamless Gas-Filled Pressure Vessels Using Acoustic Emission《使用声发射检验无缝充气的压力容器的标准实施规程》.pdf)为本站会员(outsidejudge265)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM E1419 E1419M-2015a Standard Practice for Examination of Seamless Gas-Filled Pressure Vessels Using Acoustic Emission《使用声发射检验无缝充气的压力容器的标准实施规程》.pdf

1、Designation: E1419/E1419M 15aStandard Practice forExamination of Seamless, Gas-Filled, Pressure VesselsUsing Acoustic Emission1This standard is issued under the fixed designation E1419/E1419M; the number immediately following the designation indicates the yearof original adoption or, in the case of

2、revision, the year of last revision. A number in parentheses indicates the year of last reapproval.A superscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope*1.1 This practice provides guidelines for acoustic emission(AE) examinations of seamless pressure v

3、essels (tubes) of thetype used for distribution or storage of industrial gases.1.2 This practice requires pressurization to a level greaterthan normal use. Pressurization medium may be gas or liquid.1.3 This practice does not apply to vessels in cryogenicservice.1.4 The AE measurements are used to d

4、etect and locateemission sources. Other nondestructive test (NDT) methodsmust be used to evaluate the significance of AE sources.Procedures for other NDT techniques are beyond the scope ofthis practice. See Note 1.NOTE 1Shear wave, angle beam ultrasonic examination is commonlyused to establish circu

5、mferential position and dimensions of flaws thatproduceAE. Time of Flight Diffraction (TOFD), ultrasonic examination isalso commonly used for flaw sizing.1.5 The values stated in either SI units or inch-pound unitsare to be regarded separately as standard. The values stated ineach system may not be

6、exact equivalents; therefore, eachsystem shall be used independently of the other. Combiningvalues from the two systems may result in non-conformancewith the standard.1.6 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of

7、the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use. Specific precau-tionary statements are given in Section 7.2. Referenced Documents2.1 ASTM Standards:2E543 Specification for Agencies Performing Non

8、destructiveTestingE650 Guide for Mounting Piezoelectric Acoustic EmissionSensorsE976 Guide for Determining the Reproducibility ofAcousticEmission Sensor ResponseE1316 Terminology for Nondestructive ExaminationsE2223 Practice for Examination of Seamless, Gas-Filled,Steel Pressure Vessels Using Angle

9、Beam UltrasonicsE2075 Practice for Verifying the Consistency of AE-SensorResponse Using an Acrylic RodE2374 Guide for Acoustic Emission System PerformanceVerification2.2 ASNT Standards:3Recommended Practice SNT-TC-1A for NondestructiveTesting Personnel Qualification and CertificationANSI/ASNT CP-189

10、 Standard for Qualification and Certifi-cation of Nondestructive Testing Personnel2.3 Code of Federal Regulations:Section 49, Code of Federal Regulations, Hazardous Mate-rials Regulations of the Department of Transportation,Paragraphs 173.34, 173.301, 178.36, 178.37, and 178.4542.4 Compressed Gas As

11、sociation Standard:5Pamphlet C-5 Service Life, Seamless High Pressure Cylin-ders1This practice is under the jurisdiction of ASTM Committee E07 on Nonde-structive Testing and is the direct responsibility of Subcommittee E07.04 onAcoustic Emission Method.Current edition approved Dec. 1, 2015. Publishe

12、d December 2015. Originallyapproved in 1991. Last previous edition approved in 2015 as E1419 15. DOI:10.1520/E1419_E1419M-15A.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information,

13、 refer to the standards Document Summary page onthe ASTM website.3Available fromAmerican Society for Nondestructive Testing (ASNT), P.O. Box28518, 1711 Arlingate Ln., Columbus, OH 43228-0518, http:/www.asnt.org.4Available from U.S. Government Printing Office Superintendent of Documents,732 N. Capito

14、l St., NW, Mail Stop: SDE, Washington, DC 20401, http:/www.access.gpo.gov.5Available from Compressed Gas Association (CGA), 4221 Walney Rd., 5thFloor, Chantilly, VA 20151-2923, http:/.*A Summary of Changes section appears at the end of this standardCopyright ASTM International, 100 Barr Harbor Drive

15、, PO Box C700, West Conshohocken, PA 19428-2959. United States1CGA-C18 Methods for Acoustic Emission Requalificationof Seamless Steel Compressed Gas Tubes2.5 AIA Document:NAS-410 Certification and Qualification of NondestructiveTesting Personnel62.6 ISO Standards:7ISO 9712 Non-destructive TestingQua

16、lification and Cer-tification of NDT PersonnelISO 16148 Gas CylindersAcoustic Emission Testing (AT)for Periodic Inspection3. Terminology3.1 DefinitionsSee Terminology E1316 for general termi-nology applicable to this practice.3.2 Definitions of Terms Specific to This Standard:3.2.1 fracture critical

17、 flawa flaw that is large enough toexhibit unstable growth at service conditions.3.2.2 marked service pressurepressure for which a vesselis rated. Normally this value is stamped on the vessel.3.2.3 normal fill pressurelevel to which a vessel is pres-surized. This may be greater, or may be less, than

18、 markedservice pressure.4. Summary of Practice4.1 The AE sensors are mounted on a vessel, and emissionis monitored while the vessel is pressurized above normal fillpressure.4.2 Sensors are mounted at each end of the vessel and areconnected to an acoustic emission signal processor. The signalprocesso

19、r uses measured times of arrival of emission bursts todetermine linear location of emission sources. If measuredemission exceeds a prescribed level (that is, specific locationsproduce enough events), then such locations receive secondaryNDT (for example, ultrasonic examination).4.3 Secondary examina

20、tion establishes presence of flawsand measures flaw dimensions.4.4 If flaw depth exceeds a prescribed limit (that is, aconservative limit that is based on construction material, wallthickness, fatigue crack growth estimates, and fracture criticalflaw depth calculations), then the vessel must be remo

21、ved fromservice.5. Significance and Use5.1 Because of safety considerations, regulatory agencies(for example, U.S. Department of Transportation) requireperiodic examinations of vessels used in transportation ofindustrial gases (see Section 49, Code of Federal Regulations).The AE examination has beco

22、me accepted as an alternative tothe common hydrostatic proof test. In the common hydrostatictest, volumetric expansion of vessels is measured.5.2 An AE examination should not be performed for aperiod of one year after a common hydrostatic test. See Note 2.NOTE 2The Kaiser effect relates to decreased

23、 emission that isexpected during a second pressurization. Common hydrostatic tests use arelatively high pressure (167 % of normal service pressure). (See Section49, Code of Federal Regulations.) If an AE examination is performed toosoon after such a pressurization, the AE results will be insensitive

24、 to alower examination pressure (that is, the lower pressure that is associatedwith an AE examination).5.3 Pressurization:5.3.1 General practice in the gas industry is to use lowpressurization rates. This practice promotes safety and reducesequipment investment. The AE examinations should be per-for

25、med with pressurization rates that allow vessel deformationto be in equilibrium with the applied load. Typical currentpractice is to use rates that approximate 3.45 MPa/h500 psi h.5.3.2 Gas compressors heat the pressurizing medium. Afterpressurization, vessel pressure may decay as gas temperatureequ

26、ilibrates with ambient conditions.5.3.3 Emission from flaws is caused by flaw growth andsecondary sources (for example, crack surface contact andcontained mill scale). Secondary sources can produce emissionthroughout vessel pressurization.5.3.4 When pressure within a vessel is low, and gas is thepre

27、ssurizing medium, flow velocities are relatively high. Flow-ing gas (turbulence) and impact by entrained particles canproduce measurable emission. Considering this, acquisition ofAE data may commence at some pressure greater than startingpressure (for example,13 of maximum examination pressure).5.3.

28、5 Maximum Test PressureSerious flaws usually pro-duce more acoustic emission (that is, more events, events withhigher peak amplitude) from secondary sources than from flawgrowth. When vessels are pressurized, flaws produce emissionat pressures less than normal fill pressure. A maximum exami-nation p

29、ressure that is 10 % greater than normal fill pressureallows measurement of emission from secondary sources inflaws and from flaw growth.5.3.6 Pressurization SchedulePressurization should pro-ceed at rates that do not produce noise from the pressurizingmedium and that allow vessel deformation to be

30、in equilibriumwith applied load. Pressure holds are not necessary; however,they may be useful for reasons other than measurement of AE.5.4 Excess background noise may distort AE data or renderthem useless. Users must be aware of the following commonsources of background noise: high gas-fill rate (me

31、asurableflow noise); mechanical contact with the vessel by objects;electromagnetic interference (EMI) and radio frequency inter-ference (RFI) from nearby broadcasting facilities and fromother sources; leaks at pipe or hose connections; and airbornesand particles, insects, or rain drops. This practic

32、e should notbe used if background noise cannot be eliminated or controlled.5.5 Alternate procedures are found in ISO 16148 and CGAC18. These include hydrostatic proof pressurization of indi-vidual vessels and data interpretation using modal analysistechniques6Available from Aerospace Industries Asso

33、ciation of America, Inc. (AIA), 1000Wilson Blvd., Suite 1700,Arlington, VA22209-3928, http:/www.aia-aerospace.org.7Available from International Organization for Standardization (ISO), 1, ch. dela Voie-Creuse, CP 56, CH-1211 Geneva 20, Switzerland, http:/www.iso.org.E1419/E1419M 15a26. Basis of Appli

34、cation6.1 The following items are subject to contractual agree-ment between the parties using or referencing this practice.6.2 Personnel QualificationIf specified in the contractualagreement, personnel performing examinations to this standardshall be qualified in accordance with a nationally or inte

35、rna-tionally recognized NDT personnel qualification practice orstandard such asANSI/ASNT-CP-189, SNT-TC-1A, NAS-410,ISO 9712, or a similar document and certified by the employeror certifying agency, as applicable. The practice or standardused and its applicable revision shall be identified in thecon

36、tractual agreement between the using parties.6.3 Qualification of Nondestructive AgenciesIf specifiedin the contractual agreement, NDT agencies shall be qualifiedand evaluated as described in Practice E543. The applicableedition of Practice E543 shall be specified in the contractualagreement.6.4 Tim

37、e of ExaminationThe timing of examination shallbe in accordance with 5.2 unless otherwise specified.6.5 Extent of ExaminationThe extent of examination in-cludes the entire pressure vessel unless otherwise specified.6.6 Reporting Criteria/Acceptance CriteriaReporting cri-teria for the examination res

38、ults shall be in accordance withSection 11 unless otherwise specified. Since acceptance criteria(for example, reference radiographs) are not specified in thispractice, they shall be specified in the contractual agreement.6.7 Reexamination of Repaired/Reworked ItemsReexamination of repaired/reworked

39、items is not addressed inthis practice and if required shall be specified in the contractualagreement.7. Apparatus7.1 Essential features of the apparatus required for thispractice are provided in Fig. 1. Full specifications are in AnnexA1.7.2 Couplant must be used to acoustically connect sensorsto t

40、he vessel surface. Adhesives that have acceptable acousticproperties, and adhesives used in combination with traditionalcouplants, are acceptable.7.3 Sensors may be held in place with magnets, adhesivetape, or other mechanical means.7.4 The AE sensors are used to detect strain-induced stresswaves pr

41、oduced by flaws. Sensors must be held in contact withthe vessel wall to ensure adequate acoustic coupling.7.5 A preamplifier may be enclosed in the sensor housing orin a separate enclosure. If a separate preamplifier is used, cablelength, between sensor and preamp, must not exceed 2 m6.6 ft.7.6 Powe

42、r/signal cable length (that is, cable between pre-amp and signal processor) shall not exceed 150 m 500 ft. SeeA1.5.7.7 Signal processors are computerized instruments withindependent channels that filter, measure, and convert analoginformation into digital form for display and permanent stor-age.Asig

43、nal processor must have sufficient speed and capacityto independently process data from all sensors simultaneously.The signal processor should provide capability to filter data forreplay. A printer should be used to provide hard copies ofexamination results.7.7.1 A video monitor should display proce

44、ssed examina-tion data in various formats. Display format may be selected bythe equipment operator.FIG. 1 Essential Features of the Apparatus with Typical Sensor PlacementsE1419/E1419M 15a37.7.2 A data storage device may be used to provide data forreplay or for archives.7.7.3 Hard copy output capabi

45、lity should be available froma printer or equivalent device.8. Safety Precautions8.1 As in any pressurization of metal vessels, ambienttemperature should not be below the ductile-brittle transitiontemperature of the pressure vessel construction material.9. Calibration and Standardization9.1 Annual c

46、alibration and verification of pressuretransducer, AE sensors, preamplifiers (if applicable), signalprocessor (particularly the signal processor time reference),and AE electronic waveform generator should be performed.Equipment should be adjusted so that it conforms to equipmentmanufacturers specifi

47、cations. Instruments used for calibra-tions must have current accuracy certification that is traceableto the National Institute for Standards and Technology (NIST).9.2 Routine electronic evaluation of the signal processorshould be performed monthly and any time there is concernabout signal processor

48、 performance. An AE electronic wave-form generator should be used in making evaluations. Eachsignal processor channel must respond with peak amplitudereading within 62dBAEof the electronic waveform generatoroutput.9.3 Routine evaluation of the sensors should be performedmonthly. An accepted procedur

49、e for this purpose found inPractice E2075 and Guide E976.9.4 Routine verification of the systems ability to locate andcluster data should be performed monthly. With two sensorsmounted on one tube and a ruler taped to the tube surface, usea pencil lead break (PLB) at 60 cm 2 ft. intervals along theentire length of the tube (5 PLBs at each point). Examine therecorded data to verify that locations and clusters are in thecorrect positions.9.5 Pre-examination and post-examination, system perfor-mance verification must be conducted immediat

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1