ImageVerifierCode 换一换
格式:PDF , 页数:6 ,大小:106.16KB ,
资源ID:529375      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-529375.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM E1747-1995(2011) Standard Guide for Purity of Carbon Dioxide Used in Supercritical Fluid Applications 《超临界流体应用中二氧化碳纯度标准指南》.pdf)为本站会员(explodesoak291)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM E1747-1995(2011) Standard Guide for Purity of Carbon Dioxide Used in Supercritical Fluid Applications 《超临界流体应用中二氧化碳纯度标准指南》.pdf

1、Designation: E1747 95 (Reapproved 2011)Standard Guide forPurity of Carbon Dioxide Used in Supercritical FluidApplications1This standard is issued under the fixed designation E1747; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, th

2、e year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.INTRODUCTIONThe rapid commercial development of carbon dioxide for use in supercritical fluid extraction (SFE)and superc

3、ritical fluid chromatography (SFC) has hastened the need to establish common puritystandards to be specified by specialty gas suppliers. As a consequence of its isolation frompetrochemical side-streams or as a by-product of fermentation or ammonia synthesis, carbon dioxidecontains a wide range of im

4、purities that can interfere with analytical quantification or instrumentoperation. This guide is intended to serve as a guide to specialty gas suppliers for testing the suitabilityof carbon dioxide for use in SFC and SFE applications.1. Scope1.1 This guide defines purity standards for carbon dioxide

5、 toensure the suitability of liquefied carbon dioxide gas for use inSFE and SFC applications (see Guide E1449 for definitions ofterms). This guide defines quantitation, labeling, and statisticalstandards for impurities in carbon dioxide that are necessaryfor successful SFE or SFC laboratory work, an

6、d it suggestsmethods of analysis for quantifying these impurities.1.2 This guide is provided for use by specialty gas supplierswho manufacture carbon dioxide specifically for SFE or SFCapplications. SFE or SFC carbon dioxide (CO2) productsoffered with a claim of adherence to this guide will meetcert

7、ain absolute purity and contaminant detectability require-ments matched to the needs of current SFE or SFC techniques.The use of this guide allows different SFE or SFC CO2productofferings to be compared on an equal purity basis.1.3 This guide considers contaminants to be those compo-nents that eithe

8、r cause detector signals that interfere with thoseof the target analytes or physically impede the SFE or SFCexperiment.1.4 The values stated in SI units are to be regarded asstandard. No other units of measurement are included in thisstandard.1.5 This standard does not purport to address all of thes

9、afety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2D2504 Test Method for Noncondensable Gas

10、es in C2andLighter Hydrocarbon Products by Gas ChromatographyD2820 Test Method for C Through C5Hydrocarbons in theAtmosphere By Gas Chromatography3D3670 Guide for Determination of Precision and Bias ofMethods of Committee D22D3686 Practice for Sampling Atmospheres to Collect Or-ganic Compound Vapors

11、 (Activated Charcoal Tube Ad-sorption Method)D3687 Practice for Analysis of Organic Compound VaporsCollected by the Activated Charcoal Tube AdsorptionMethodD4178 Practice for Calibrating Moisture AnalyzersD4532 Test Method for Respirable Dust in WorkplaceAtmospheres Using Cyclone SamplersE260 Practi

12、ce for Packed Column Gas ChromatographyE355 Practice for Gas Chromatography Terms and Rela-tionshipsE594 Practice for Testing Flame Ionization Detectors Usedin Gas or Supercritical Fluid ChromatographyE697 Practice for Use of Electron-Capture Detectors in GasChromatography1This guide is under the ju

13、risdiction of ASTM Committee E13 on MolecularSpectroscopy and Separation Science and is the direct responsibility of Subcom-mittee E13.19 on Separation Science.Current edition approved Nov. 1, 2011. Published December 2011. Originallyapproved in 1995. Last previous edition approved in 2005 as E1747

14、95 (2005).DOI: 10.1520/E1747-95R11.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3Withdrawn. The last appro

15、ved version of this historical standard is referencedon www.astm.org.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.E1449 Guide for Supercritical Fluid ChromatographyTerms and RelationshipsE1510 Practice for Installing Fused Silica

16、Open TubularCapillary Columns in Gas Chromatographs2.2 CGA Publications:4CGA G-5.4 Standard for Hydrogen Piping Systems at Con-sumer LocationsCGA P-1 Safe Handling of Compressed Gases in Contain-ersCGA P-9 The Inert Gases: Argon, Nitrogen and HeliumCGA P-12 Safe Handling of Cryogenic LiquidsCGA V-7

17、Standard Method of Determining Cylinder ValveOutlets Connections for Industrial Gas MixturesG-6 Carbon DioxideHB-3 Handbook of Compressed Gases3. Classification3.1 This guide covers the following four different classes ofcompounds:3.1.1 Liquid-Phase ContaminantsThese are materials dis-solved in the

18、CO2liquid phase that can be volatilized below300C and resolved chromatographically using a gas chroma-tography (CG) column; and detected by either a flame ioniza-tion (FI) or electron capture (EC) detector (D). Speciesrepresentative of this class include moderate (100 to 600)molecular weight hydroca

19、rbons and halocarbons (oils andlubricants).NOTE 1Liquid-phase contaminant levels are defined in terms of thelowest limit of detector response (LLDR)5for FIDs or ECDs only, becausethey are the primary detectors used with SFE or SFC techniques.However, the purification procedures used by the gas suppl

20、ier to removeFID- and ECD-responsive contaminants are assumed to be effective forcontaminants responsive to other (for example, NPD, MS, IR, UV, etc.)detectors.Because a wide variety of contaminants are found in liquid-phase CO2as a consequence of its source, full speculation of every impurity by th

21、egas supplier is impractical. All liquid-phase contaminants are thereforequantified relative to two representative internal primary reference stan-dards: hexadecane (HD or C16H34) for the FID and hexachlorobenzene(HCB or C6Cl6) for the ECD. Contaminant limits are defined on a massbasis for single pe

22、aks and for the sum of all detector responses.3.1.2 MoistureAlthough water is sparingly (250C) residue following the vaporization of liquidCO2, such as small particles and high-boiling solutes, aredetrimental to both SFE and SFC applications. Species repre-sentative of this class include nonchromato

23、graphicable hydro-carbons or halocarbon oils, greases, and inorganic particles (forexample, silica). A maximum concentration of 1 ppm will beconsidered acceptable.4. Purity Specifications for SFE or SFC Grade CO24.1 This guide proposes the following minimum purityspecifications for CO2for each of th

24、e classes of contaminants,based on the demands of currently practiced SFE or SFCtechniques.4.1.1 Liquid-Phase Contaminants Specification:4.1.1.1 SFE grade carbon dioxide is intended to be used asan extraction solvent from which a significant concentration ofself-contained contaminates is possible be

25、cause relatively large(50 g) amounts of carbon dioxide may be used. Because eachimpurity cannot be identified, a known amount of internalreference compounds (for example, HD and HCB) will be usedduring the analysis to quantify contaminants on a relativeweight basis. Total contaminant levels will be

26、expressed in ngof contaminant per g of CO2and defined as that amount ofimpurity that will produce a detector signal at the “typical”detection limits for an FID or ECD found in 1.0 g of CO2. The1-g amount of carbon dioxide was selected as a convenientmass from which the chemist could relate carbon di

27、oxidecontamination levels with the amount of carbon dioxiderequired for his/her analysis by a simple ratio.4.1.1.2 SFC grade carbon dioxide is intended to be used asa mobile phase material transferred directly from a chromato-graphic column to a detector (FID or ECD) without pre-concentration (see P

28、ractice E355). Accepted internal referencecompounds (for example, HD and HCB) will be used assurrogate contaminants. Contaminant levels will be expressedin ng of contaminant per g of CO2and will be defined as thatamount which will produce a detector signal 20 times greaterthan the “typical” detectio

29、n limit for FID and 25 times greaterthan an ECD at the lowest detectable limit for a single peak. Atotal of 200 times the lowest detectable limit will be set for allcontaminants for a specific detector.4.1.1.3 When specifying a FID response for SFE, themaximum amount of any one contaminant (that is,

30、 one peak inthe chromatogram) will be 1 ng/g of liquid-phase CO2. This isequivalent to 1 ppb on a mass basis, or 1 ppb w/w. Themaximum amount of all FID-responsive contaminants (that is,the sum of all peaks in the chromatogram) will be 10 ng/g ofliquid-phase CO2or 10 ppb w/w. Contaminant concentrati

31、onsare expressed in terms of the equivalent response for hexade-cane, the internal standard, regardless of the actual identity ofthe contaminant.4.1.1.4 When specifying an FID response for SFC, thegenerally accepted LLDR for a FID is 0.25 6 0.1 ng for asingle component with a signal-to-noise ratio o

32、f 3:1. Therefore,“20” 3 0.25 ng = 5 ng to the detector (one peak), and“200” 3 0.25 ng = 50 ng total detector response. If all 5 ng ofthe contaminant comes from1gofliquid-phase carbondioxide, the single component impurity level would be 50 ppb.This assumes that1gofcarbon dioxide arrives at the detect

33、orat one time, and the density of the CO2is 1 g/mL. Under4Available from Compressed Gas Association (CGA), 4221 Walney Rd., 5thFloor, Chantilly, VA 20151-2923, http:/.5Poole, C.F., and Poole, S.K., Chromatography Today , Elsevier, 1991, p. 86.E1747 95 (2011)2typical SFC conditions of ;400 atm and 75

34、C, less than 0.1 gof CO2actually reaches the FID when using a 0.25 mm insidediameter column with a 15-s wide peak. Therefore, thecontamination level acceptable for SFC applications would beless than 16 ppb on an absolute basis for a single peak (seePractice E594).4.1.1.5 ECD DetectorFor SFE, the max

35、imum amount ofany one contaminant (that is, one peak in the chromatogram)will be 0.2 ng/g of liquid-phase CO2. This is equivalent to 0.2ppb w/w, or 200 ppt w/w, on a mass basis. The maximumamount of all ECD-responsive contaminants (that is, the sumof all peaks in the chromatogram) will be 2 ng/g of

36、liquid-phase CO2or 2 ppb w/w. Contaminant concentrations areexpressed in terms of the equivalent response for hexachlo-robenzene, the internal standard, regardless of the actualidentity of the contaminant (see Practice E697).4.1.1.6 For SFC applications, the ECD is 5 times moresensitive than the FID

37、, assuming two halogen atoms permolecule. Therefore, the total concentration of a single ECDimpurity is proposed to be 1 ng/g of CO2or 1 ppb. The totalamount of ECD impurities considered acceptable is 10 ng/g ofCO2or 10 ppb.4.1.2 Higher-Purity MaterialsThe specifications andmethodology proposed in t

38、his guide can be used to certify CO2materials with higher-purity specifications. To certify suchmaterials, gas suppliers must vary (increase) the quantity ofCO2collected and adjust the quantity of internal standard usedfor calibration. Contaminant concentrations are expressed interms of the equivale

39、nt responses for the internal standardsrecommended above and reported on a mass basis relative tothe mass of CO2collected. The applicable detector must bespecified.4.1.2.1 Minimum-purity CO2contains a total of 10 ng ofFID-responsive contaminants per g of CO2(10 ppb w/w), withno single FID-responsive

40、 contaminant greater than 1 ng/g (1ppb w/w). Higher-specification CO2, for example, may containa total of 1 ppb w/w of FID-responsive contaminants, with nosingle contaminant greater than 0.1 ppb w/w.4.1.2.2 Gas suppliers are free to manufacture materials withpurity specifications as stringent as the

41、y choose. SFC and SFEpractitioners may use the purity reporting standards definedhere as a basis for needs assessment and product comparison.No “grading” nomenclature is recommended in this guide.4.1.3 Moisture SpecificationThe maximum amount ofmoisture acceptable in the carbon dioxide is 1 ppm (mol

42、e orvolume basis).4.1.4 Gas-Phase Contaminants Specification:4.1.4.1 Gas-phase contaminants generally do not impedeSFE or SFC experiments. However, to reduce the risk ofinadvertent contamination, certain gas-phase contaminantsshould be specified and controlled.4.1.4.2 Oxygen (or Oxygen/Argon) Specif

43、icationThemaximum amount of oxygen (or unresolved oxygen/argon)acceptable is 5 ppm (mole or volume basis).4.1.4.3 Total Gas-Phase Hydrocarbons SpecificationThemaximum amount of total gas-phase hydrocarbons (THCs)acceptable is 5 ppm (mole or volume basis), expressed asmethane.4.1.5 Nonvolatile Contam

44、inants SpecificationThe maxi-mum amount of nonvolatile residue acceptable is 1 mg/g ofCO2or 1 ppm (w/w).4.1.6 Specification SummaryProposed minimum specifi-cations for SFE and SFC CO2are summarized in Table 1.5. Gas Handling and Safety5.1 The safe handling of compressed gases and cryogenicliquids fo

45、r use in chromatography is the responsibility of everylaboratory. The Compressed Gas Association, Inc. (CGA), amember group of specialty and bulk gas suppliers, publishesthe following guidelines to assist the laboratory chemist inestablishing a safe work environment: CGA P-1, CGA G-5.4,CGA P-9, CGA

46、V-7, CGA P-12, G-6, and HB-3.6. Representative Analysis Method for Liquid-PhaseContaminants6.1 Contaminants dissolved in the liquid phase of CO2arethe most critical to the success of an SFE or SFC experiment.The literature provides a wide variety of analytical methods fordetecting liquid-phase trace

47、 contaminants, any of which can beused by gas suppliers as long as the method can achieve thedetectability and statistical requirements recommended in thisguide.6.2 Adsorbent Concentration MethodOutlined below is arepresentative method for liquid-phase contaminants, referredto as the adsorbent conce

48、ntration method.6.2.1 The method is included to develop the quantitationand statistical calculations discussed in Section 8; however,this guide does not mandate its use.6.2.2 Apparatus:6.2.2.1 Gas ChromatographThe procedure requires a gaschromatograph equipped with both an FID and an ECD. TheLLDR5fo

49、r the FID must be 0.25 ng 6 0.1 ng of HD at asignal-to-noise ratio of 3:1. The LLDR for the ECD must be0.05 ng 6 0.02 ng HCB.The detectors are joined to the columnusing a “Y” separator and are back-pressure split at a 10:1FID-ECD ratio (see Practices E260 and E1510).(1) Also, the gas chromatograph must be equipped toaccommodate an external thermal desorption and cryofocusingunit, and it must be configured for wide-bore, open-tubularcolumns and temperature programming up to 270C.(2) Any common detector recording device may be used,such as a computerized

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1