ImageVerifierCode 换一换
格式:PDF , 页数:6 ,大小:136.58KB ,
资源ID:529704      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-529704.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM E1877-2015 Standard Practice for Calculating Thermal Endurance of Materials from Thermogravimetric Decomposition Data《计算自热解重量分解数据所得材料耐热性的标准实践规程》.pdf)为本站会员(周芸)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM E1877-2015 Standard Practice for Calculating Thermal Endurance of Materials from Thermogravimetric Decomposition Data《计算自热解重量分解数据所得材料耐热性的标准实践规程》.pdf

1、Designation: E1877 15Standard Practice forCalculating Thermal Endurance of Materials fromThermogravimetric Decomposition Data1This standard is issued under the fixed designation E1877; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision

2、, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This practice describes the determination of thermalendurance, thermal index, and relative thermal index

3、 fororganic materials using the Arrhenius activation energy gener-ated by thermogravimetry.1.2 This practice is generally applicable to materials with awell-defined thermal decomposition profile, namely a smooth,continuous mass change.1.3 The values stated in SI units are to be regarded asstandard.

4、No other units of measurement are included in thisstandard.1.4 There is no ISO standard equivalent to this practice.1.5 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate

5、 safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2E1641 Test Method for Decomposition Kinetics by Thermo-gravimetry Using the Ozawa/Flynn/Wall MethodE2550 Test Method for Thermal Stability by Thermogravi-me

6、tryE2958 Test Methods for Kinetic Parameters by Factor Jump/Modulated Thermogravimetry3. Terminology3.1 Definitions of Terms Specific to This Standard:3.1.1 failure, nchange in some chemical, physical,mechanical, electrical or other property of sufficient magnitudeto make it unsuitable for a particu

7、lar use.3.1.2 failure temperature (Tf), nthe temperature at which amaterial fails after a selected time.3.1.3 thermal index (TI), nthe temperature correspondingto a selected time-to-failure.3.1.4 relative thermal index (RTI), nthe temperature cor-responding to a selected time-to-failure when compare

8、d withthat of a control with proven thermal endurance characteristics.3.1.4.1 DiscussionThe TI and RTI are considered to be themaximum temperature below which the material resistschanges in its properties over a selected period of time. In theabsence of comparison data for a control material, a ther

9、malendurance (time-to-failure) of 60 000 h has been arbitrarilyselected for measuring TI and RTI.3.1.5 thermal endurance, nthe time-to-failure correspond-ing to a selected temperature. Also known as thermal lifetimeor time-to-failure.4. Summary of Practice4.1 The Arrhenius activation energy obtained

10、 from otherTest Methods (such as Test Methods E1641 and E2958, etc.) isused to construct the thermal endurance curve of an organicmaterial from which an estimate of lifetime at selected tem-peratures may be obtained.5. Significance and Use5.1 Thermogravimetry provides a rapid method for thedetermina

11、tion of the temperature-decomposition profile of amaterial.5.2 This practice is useful for quality control, specificationacceptance, and research.5.3 This test method is intended to provide an acceleratedthermal endurance estimation in a fraction of the time requirefor oven-aging tests. The primary

12、product of this test method isthe thermal index (temperature) for a selected estimatedthermal endurance (time) as derived from material decompo-sition.5.4 Alternatively, the estimated thermal endurance (time) ofa material may be estimated from a selected thermal index(temperature).5.5 Additionally,

13、the estimated thermal endurance of amaterial at selected failure time and temperature may be1This practice is under the jurisdiction of Committee E37 on Thermal Measure-ments and is the direct responsibility of Subcommittee E37.10 on Fundamental,Statistical and Mechanical Properties.Current edition

14、approved March 1, 2015. Published March 2015. Originallyapproved in 1997. Last previous edition approved in 2013 as E1877 13. DOI:10.1520/E1877-15.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandard

15、s volume information, refer to the standards Document Summary page onthe ASTM website.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States1estimated when compared to a reference value for thermalendurance and thermal index obtained from el

16、ectrical ormechanical oven aging tests.5.6 This practice shall not be used for product lifetimepredications unless a correlation between test results and actuallifetime has been demonstrated. In many cases, multiplemechanisms occur during the decomposition of a material,with one mechanism dominating

17、 over one temperature range,and a different mechanism dominating in a different tempera-ture range. Users of this practice are cautioned to demonstratefor their system that any temperature extrapolations are tech-nically sound.6. Calculation6.1 The following values are used to calculate thermalendur

18、ance, estimated thermal life and failure temperature.6.1.1 The following definitions apply to 6.1 6.4:6.1.1.1 E = Arrhenius activation energy (J/mol),NOTE 1E may be obtained from another methods (such as TestMethods E1641 and E2958, etc.).6.1.1.2 R = universal gas constant (= 8.31451 J/(mol K),6.1.1

19、.3 = heating rate (K/min),NOTE 2 may obtained from Test Method E2550 and is typically 5K/min.6.1.1.4 TI = thermal index (K),6.1.1.5 a = Doyle approximation integral (taken from Table1),6.1.1.6 = constant conversion failure criterion,6.1.1.7 tf= estimated thermal endurance (thermal life) for aconstan

20、t conversion () taken as the failure criterion (min),6.1.1.8 Tc= failure temperature taken as temperature for thepoint of constant conversion for (K) obtained from TestMethod E2550,6.1.1.9 RTI = Relative Thermal Index (K),6.1.1.10 = standard deviation in activation energy (J/mol)obtained from Test M

21、ethods E1641 and E2958, etc.,NOTE 3The precision of the calculation in this practice are exponen-tially dependent on the uncertainty of activation energy value used. Careshould be taken to use only the most precise values of E.6.1.1.11 TI = thermal index (K),6.1.1.12 TI = standard deviation of the t

22、hermal index (K),6.1.1.13 RTI = standard deviation of the relative thermalindex (K),6.1.1.14 tf= standard deviation of the thermal endurance(min),6.1.1.15 tr= reference value for thermal endurance (min),and6.1.1.16 Tr= reference value for thermal index (K).6.2 Method 1 Thermal Index:6.2.1 Using the

23、activation energy (E) and failure tempera-ture (Tc), determine the value for E/RTc.6.2.2 Using the value of E/RTc, determine the value for theDoyle approximation intergral (a) by interpolation in Table 1.6.2.3 Select the thermal endurance (tf) and calculate itslogarithm.6.2.4 Substitute the values f

24、or E, R, log(tf), log(E/RTc) anda into Eq 1 to obtain the thermal index (TI) (3).3TI 5 E2.303 R log tf! 2 log$E R % 1a#! (1)6.2.5 Determine the relative standard deviation (TI/TI)using Eq 2.TITI1.2EE (2)6.2.6 Report the thermal index (TI) and its relative standarddeviation (TI/TI) along with the the

25、rmal endurance (tf).6.3 Method B Thermal Endurance Curve:3The boldface numbers in parentheses refer to a list of references at the end ofthis standard.TABLE 1 Numerical Integration Constants (1, 2)3E/RT a8 5.36999 5.898010 6.415711 6.927612 7.432713 7.932314 8.427315 8.918216 9.405617 9.890018 10.37

26、1619 10.850720 11.327721 11.802622 12.275723 12.747124 13.217025 13.685526 14.152727 14.618728 15.083629 15.547430 16.010331 16.472232 16.933333 17.393634 17.853235 18.312036 18.770137 19.227638 19.684539 20.140840 20.596641 21.051942 21.506643 21.960944 22.414845 22.868246 23.321247 23.773848 24.22

27、6049 24.677950 25.129451 25.580652 26.031453 26.482054 26.932355 27.382356 27.831957 28.281458 28.730559 29.179460 29.6281E1877 1526.3.1 Arbitrarily select two or three temperatures in theregion of interest and calculate the corresponding logarithm ofthe thermal endurance (logtf) values at each temp

28、eratureusing Eq 3.logtf# 5 E2.303 RT!1logE R !# 2 a# (3)6.3.2 Prepare a display of logarithm of thermal enduranceon the ordinate versus the reciprocal of absolute temperature onthe abscissa (see Fig. 1).6.3.3 Alternative thermal indexes (TI) and associated loga-rithm of thermal endurance (logtf may

29、be estimated from thisdisplay.6.3.4 The standard deviation in the thermal endurance (tf)may be estimated using Eq 4.tftf5 1 2 0.052 E RT! 3 E E! (4)6.4 Method C Relative Thermal Index:6.4.1 Relative Thermal Index may be determined from theactivation energy determined by thermogravimetry and thetherm

30、al index obtained by some other method (such aselectrical or mechanical tests) using Eq 5.RTI 5 ERln tf# 2 lntr#1ERTr!# (5)6.4.2 The relative standard deviation of the relative thermalindex (RTI/RTI) is estimate from Eq 6 where the referencevalues of thermal endurance (tr) and corresponding referenc

31、etemperature (Tr) are considered to be exact.RTIRTI 5 1.4EE (6)7. Report7.1 Report the following information:7.1.1 The value, standard deviation (or relative standarddeviation), and source for each value used in the determination;7.1.2 Designation of the material under test, including thename of the

32、 manufacturer, the lot number, and supposedchemical composition when known; and7.1.3 The calculated thermal index (TI) and its relativestandard deviation (TI/TI) or relative thermal index (RTI) andits relative standard deviation (RTI/RTI) along with theidentified thermal endurance.7.1.3.1 ExampleTI

33、(60 000 hr) = 453 6 6 K (180 6 6C)7.1.4 The specific dated version of this practice that is used.8. Precision and Bias48.1 The precision and bias of these calculations depend onthe precision and bias of the kinetic data used in them. Toprovide an example of the precision expected, thermal indexwas c

34、alculated by the procedure in this practice using data forpoly(tetrafluoroethylene) from the interlaboratory study con-ducted to develop the precision and bias statement for TestMethod E1641. Extreme values of thermal life were calculatedusing an arbitrarily chosen value for temperature of 600 K and

35、the extreme values of E corresponding to the 95 % confidencelevel from that interlaboratory study. The resulting calculatedextreme values were 9 years and 3700 years for this material.9. Keywords9.1 Arrhenius activation energy; Arrhenius pre-exponentialfactor; kinetic parameters; relative thermal in

36、dex; thermaldecomposition; thermal endurance; thermal life; thermogravi-metric analysis4Supporting data have been filed at ASTM International Headquarters and maybe obtained by requesting Research Report RR:E37-1024. ContactASTM CustomerService at serviceastm.org.E1877 153FIG.1ThermalEnduranceCurveE

37、1877 154APPENDIX(Nonmandatory Information)X1. EXAMPLE CALCULATIONSX1.1 Example Calculations for the Values Determined inThis StandardX1.1.1 Example data obtained from Test Method E1641includes:X1.1.1.1 E = 320 kJ/mol = 320 000 J/molX1.1.1.2 E = 24 kJ/mol = 24 000 J/molX1.1.1.3 R = 8.31451 J/(mol K)X

38、1.1.1.4 = 5.0 K/minX1.1.2 Example data obtained from Test Method E2550includes:X1.1.2.1 Tc= 783 KX1.1.2.2 Tc=6KX1.1.3 Arbitrarily selected:X1.1.3.1 tf= 60 000 hr = 3 600 000 min = 6.8 yrX1.1.3.2 Tr= 683 KX1.1.3.3 tr= 100 000 hr = 6 000 000 min = 11 yrX1.2 Example Calculations for Thermal Index (TI)X

39、1.2.1 Determine the value for E/RT from values inX1.1.1.1, X1.1.1.3, and X1.1.2.1:ERT 5 320 000 J mol!8.31451 J/ mol K! 3783 K#5 49.1532X1.2.2 Using the value of E/RT from X1.2.1, determine thevalue for a by interpolation in Table 1:a 5 24.7471X1.2.3 Substitute values from X1.1.1.1, X1.1.1.3, X1.1.1

40、.4,X1.1.3.1, and X1.2.2 into Eq 1:TI 5 E2.303 R $log tf# 2 logE R !#1a%!5 $320 000 J mol 2.303 3 8.314 J mol K!%$log 3.6 3 106min#2log320 000 J mol 8.31451 J mol K! 35 Kmin#224.74715 $16 712 K%$6.5563 2 log 7697.39 min# 2 24.7471%5 16 712 K$6.5563 2 3.8863 2 24.7471%5 16 712 K27.4171TI 5 609.5 K 5 3

41、36.3 CX1.3 Example Calculation for the Imprecision in Ther-mal IndexX1.3.1 Substituting values from X1.1.1.2 and X1.1.1.3 intoEq 2:TI 51.2 EE51.2 324 000 Jmol320 000 Jmol50.090X1.4 Example Calculation for Thermal EnduranceX1.4.1 Substituting the values from X1.1.1.1, X1.1.1.3,X1.1.1.4, X1.1.3.2, and

42、 X1.2.2 into Eq 3:logtf# 5 E2.303 RT#1logE R # 2 a5 320 000 Jmol2.303 3 683 K!1log320 000 J mol 8.31451 J mol K!#224.7471 35 Kmin5 24.46801log7697.39# 2 24.74715 24.468013.8863 2 24.7471logtf# 5 3.6072tf5 4048 min 3 hr/60 min! 5 67.46 hrX1.5 Example Calculation of the Imprecision in ThermalEndurance

43、 (tf)X1.5.1 Substituting value from X1.1.1.1, X1.1.1.2,X1.1.1.3, X1.1.3.2, and X1.2.2 into Eq 4:tftf5 1 1 0.052 E RT! 3 EE5 1 1 0.052 3 320 000 J mol!8.31451 J mol K 3 683 K!324 000 Jmol320 000 Jmol5 1 1 2.930! 30.0755 3.930 30.0755 0.29X1.6 Example Calculation of Relative Thermal IndexX1.6.1 Substi

44、tuting values from X1.1.1.1, X1.1.1.3,X1.1.3.1, X1.1.3.2, and X1.1.3.3 into Eq 5:RTI 5 ER$ln tf# 2 lntr#1ERTr#%5 320 00 Jmol 8.31451JmolK$ln 3 600 000 min#2ln6 000 000 min#1320 000 Jmol K8.31451 J mol K 3 683 K!5 38 487 K15.0964 2 15.6073 1 56.3706!5 38 487 K55.85975 689 KX1.7 Example Calculation of

45、 the Standard Deviation ofRelative Thermal IndexX1.7.1 Substituting values from X1.1.1.1 and X1.1.1.2 intoEq 6:RTIRTI 51.4 324 000 Jmol320 000 Jmol50.105E1877 155REFERENCES(1) Toop, D. J., “Theory of Life Testing and Use of ThermogravimetricAnalysis to Predict the Thermal Life of Wire Enamels,” IEEE

46、Transactions on Electrical Insulation, Vol EI-6, No. 1, 1971, pp. 214.(2) Flynn, J. H., “The Isoconversional Method for Determination ofEnergy of Activation at Constant Rates Corrections for the DoyleApproximation,” Journal of Thermal Analysis, Vol 27, 1983, pp.95102.(3) Krizanovsky, L., and Mentlik

47、, V., “The Use of Thermal Analysis toPredict the Thermal Life of Organic Electrical Insulating Materials,”Journal of Thermal Analysis, Vol 13, 1978, pp. 571580.ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentionedin this stan

48、dard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the riskof infringement of such rights, are entirely their own responsibility.This standard is subject to revision at any time by the responsible technical committee and must be revie

49、wed every five years andif not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standardsand should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of theresponsible technical committee, which you may attend. If you feel that your commen

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1