ImageVerifierCode 换一换
格式:PDF , 页数:15 ,大小:655.54KB ,
资源ID:530346      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-530346.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM E2126-2009 Standard Test Methods for Cyclic (Reversed) Load Test for Shear Resistance of Vertical Elements of the Lateral Force Resisting Systems for Buildings《建筑物抗侧力系统垂直构件剪切阻.pdf)为本站会员(confusegate185)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM E2126-2009 Standard Test Methods for Cyclic (Reversed) Load Test for Shear Resistance of Vertical Elements of the Lateral Force Resisting Systems for Buildings《建筑物抗侧力系统垂直构件剪切阻.pdf

1、Designation: E 2126 09Standard Test Methods forCyclic (Reversed) Load Test for Shear Resistance of VerticalElements of the Lateral Force Resisting Systems forBuildings1This standard is issued under the fixed designation E 2126; the number immediately following the designation indicates the year ofor

2、iginal adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 These test methods cover the evaluation of the shearstiffness

3、, shear strength, and ductility of the vertical elementsof lateral force resisting systems, including applicable shearconnections and hold-down connections, under quasi-staticcyclic (reversed) load conditions.1.2 These test methods are intended for specimens con-structed from wood or metal framing b

4、raced with solidsheathing or other methods or structural insulated panels.1.3 The values stated in inch-pound units are to be regardedas standard. The values given in parentheses are mathematicalconversions to SI units that are provided for information onlyand are not considered standard.1.4 This st

5、andard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1

6、 ASTM Standards:2D 2395 Test Methods for Specific Gravity of Wood andWood-Based MaterialsD 4442 Test Methods for Direct Moisture Content Measure-ment of Wood and Wood-Base MaterialsD 4444 Test Method for Laboratory Standardization andCalibration of Hand-Held Moisture MetersE 564 Practice for Static

7、Load Test for Shear Resistance ofFramed Walls for BuildingsE 575 Practice for Reporting Data from Structural Tests ofBuilding Constructions, Elements, Connections, and As-sembliesE 631 Terminology of Building Constructions2.2 ISO Standard:3ISO 16670 Timber StructuresJoints Made with Mechani-cal Fast

8、enersQuasi-static Reversed-cyclic Test Method2.3 Other Standards:4ANSI/AF the negativespecimen displacement produces a negative envelope curve.The positive direction is based on outward movement of thehydraulic actuator.3.2.4 envelope curve, average (see Fig. 3), nenvelopecurve obtained by averaging

9、 the absolute values of load anddisplacement of the corresponding positive and the negativeenvelope points for each cycle.3.2.5 equivalent energy elastic-plastic (EEEP) curve (see9.1.4, Fig. 1), nan ideal elastic-plastic curve circumscribing1These test methods are under the jurisdiction of ASTM Comm

10、ittee E06 onPerformance of Buildings and are the direct responsibility of Subcommittee E06.11on Horizontal and Vertical Structures/Structural Performance of Completed Struc-tures.Current edition approved April 1, 2009. Published April 2009. Originallyapproved in 2001. Last previous edition approved

11、in 2008 as E 2126 08.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3Available from International Organizati

12、on for Standardization (ISO), 1, ch. dela Voie-Creuse, Case postale 56, CH-1211, Geneva 20, Switzerland, http:/www.iso.ch.4Available from American Forest and Paper Association (AF moisturecontent of the framing members at the time of the specimenfabrication and testing, if more than 24 h passes betw

13、een theseoperations (see Test Methods D 4442, Test Methods A or B; orD 4444, Test Methods A or B); and specific gravity of theframing members (see Test Methods D 2395, Test Method A).The specific gravity of the framing members shall be repre-sentative of the published specific gravity for the produc

14、t withno individual member exceeding the published value by morethat 10 % (see ANSI/AF andL = length of specimen, ft (m).9.1.2 Secant shear modulus, G8,at0.4Ppeakand at Ppeakshall be calculated as follows:G8 5PD3HL(2)where:G8 = shear modulus of the specimen obtained from test(includes shear and upli

15、ft deformation for the connec-tion system), lbf/in. (N/m); represents the secant shearstiffness at specified specimen displacements timesthe aspect ratio;P = applied load measured at the top edge of the speci-men, lbf (N);D = displacement of the top edge of the specimen based ontest, in. (m). This i

16、ncludes both the shear deflection ofthe sheathing material and its connections, and thecontribution of the shear and hold-down connectionsystems;H = height of specimen, ft (m); andL = length of specimen, ft (m).9.1.3 Cyclic ductility ratio, D, as described in 3.2.1, shall becalculated. If the shear

17、stiffness (shear modulus) at 0.4 Ppeakisgreater than that at Ppeak, generate the EEEP curve as describedin 9.1.4. Otherwise, the FME and the ultimate displacementshall be determined directly from the envelope curve. Calculatevalues of displacement, shear forces, and shear modulus at theyield limit s

18、tate and strength limit state.9.1.4 When specified by 9.1.3, develop an EEEP curve torepresent the envelope curve. Fig. 1 illustrates typical EEEPcurve. The elastic portion of the EEEP curve contains theorigin and has a slope equal to the elastic shear stiffness, Ke.The plastic portion is a horizont

19、al line equal to Pyielddeter-mined by the following equation:Pyield5 SDu2Du222AKeD Ke(3)If Du2,2AKe, it is permitted to assume Pyield5 0.85 Ppeakwhere:Pyield= yield load, lbf (N);A = the area under envelope curve from zero to ulti-mate displacement (Du) of the specimen, lbfin.(Nm);TABLE 3 Test Metho

20、d CAmplitude of Primary CyclesPattern StepMinimum Numberof CyclesAmplitude of PrimaryCycle, % D11 6 522 7 7.37 1034 4 254 346 3 4073 78 3 1009 3 100 + 100aA10 3 Additional increments of100a (until specimen failure)Aa # 0.5.E21260911Ppeak= maximum absolute load resisted by the specimenin the given en

21、velope, lbf (N);De= displacement of the top edge of the specimen at0.4 Ppeak, in. (mm); andKe= 0.4 Ppeak/De.9.1.4.1 To generate an EEEP curve as described in 8.3.2based on monotonic test results, the procedures in this sectionare permitted, with Dmsubstituting for Du.9.1.5 If the envelope curve cont

22、ains data points at loads lessthan |0.8 Ppeak| (past strength limit state), the failure limit stateshall be determined at 0.8 Ppeakusing linear interpolation, asillustrated in Fig. 1.10. Report10.1 The report shall include the following information:10.1.1 Date of the test and of report.10.1.2 Names

23、of the test sponsors and test agency and theirlocations.10.1.3 Identification of the specimen (test number, and soforth).10.1.4 Detailed description of the specimen and the testsetup, including the following:10.1.4.1 Dimensions of the specimen.10.1.4.2 Details of the physical characteristics or stru

24、cturaldesign, or both, of the specimen, including, if applicable, thetype, spacing, and edge distance of fasteners attaching sheath-ing to framing.10.1.4.3 Details of attachment of the specimen in the testfixture, including a description of the test base and whethersheathing panels are directly bear

25、ing on the sill plate duringtesting.10.1.4.4 Location of load application and load cell, straingauges, deflection gauges, and other items for test as appli-cable.10.1.4.5 Description of construction materials (for example,material type and grade, thickness, yield point, tensile strength,compressive

26、strength, density, moisture content, manufacturerof components used, source of supply, dimensions, model,type, and other pertinent information, and so forth, as appro-priate for materials used).10.1.4.6 Drawing showing plan, elevation, principal crosssection, and other details as needed for descript

27、ion of thespecimen and the test setup (see 10.1.4.1-10.1.4.5).10.1.4.7 Description of general ambient conditions includ-ing the following:(1) At construction;(2) During curing or seasoning, if applicable (includingelapsed time from construction to test); and(3) At test.10.1.4.8 Modifications made on

28、 the specimen during test-ing.10.1.4.9 Description of any noted defects existing in thespecimen prior to test.10.1.5 Description of the test, including a statement that thetest or tests were conducted in accordance with this test methodor otherwise describing any deviations from the test method.10.1

29、.6 Summary of results, including:10.1.6.1 Hysteresis loops (applied load versus displacementat the top of the specimen) for every specimen tested.10.1.6.2 Complete record (table or plot) of individual dis-placements required to be measured in 8.7.10.1.6.3 Shear strength (npeak) from tests of identic

30、al speci-mens (9.1.1).10.1.6.4 As-tested and mean values of P, D and G8 at yieldlimit state and strength limit state in accordance with Section 9.10.1.6.5 EEEP curve developed from the mean loads anddisplacements at yield limit state and failure limit state, ifapplicable (see 9.1.3 and 9.1.4).10.1.7

31、 Description of failure modes and any behaviorchange and significant events, for each test.10.1.8 Photographs of the specimen, particularly those de-picting conditions that cannot otherwise be easily described inthe report text, such as failure modes and crack patterns.10.1.9 Appendix (if needed) th

32、at includes all data notspecifically required by test results. Include special observa-tions for building code approvals.10.1.10 Signatures of responsible persons are in accordancewith Practice E 575.11. Precision and Bias11.1 No statement on the precision and bias is offered due tothe numerous indi

33、vidual elements that comprise the specimenand the small number of replicate specimens tested. A gener-ally accepted method for determining precision and bias iscurrently unavailable.12. Keywords12.1 cyclic loads; earthquake; framed walls; lateral-forceresisting systems; portal frames; racking loads;

34、 rigid support;shear displacement; shear stiffness; shear strength; structuralinsulated panelsE21260912APPENDIXES(Nonmandatory Information)X1. DETERMINATION OF FIRST MAJOR EVENTX1.1 The FME is the first significant limit state that occursduring the test. The limit state in turn denotes an event mark

35、ingphase change between two behavior states. As noted in 8.3.2,the FME can be determined from monotonic load tests on anidentical specimen. If the first estimate is inappropriate, thedata obtained can be revised for the subsequent tests. Thefollowing estimates offer guidance for a typical 8-ft (2.4-

36、mm)wall.X1.1.1 Wood-Framed Walls with Wood Structural PanelSheathingAspect ratios of 2:1 or less, FME = 0.8 in. (20mm); aspect ratio of 4:1, FME = 1.2 in. (31 mm).X1.1.2 Wood-Framed Walls with Gypsum SheathingAspect ratios of 2:1 or less, FME = 0.25 in. (6.4 mm).X2. SELECTION OF CYCLING METHODX2.1 T

37、est Method A Versus Test Method BX2.1.1 Test Method A:X2.1.1.1 Test MethodAis a sequential phased displacementpattern that exhibits decay cycles between the steps in theloading pattern. These decay cycles provide information onwhether there is a lower bound in displacement required toproduce hystere

38、tic energy dissipation (1).5An example wherea lower bound displacement causing hysteretic energy dissipa-tion may occur would be a bolted connection through anover-drilled hole.X2.1.1.2 Test Method A is based on Ref (2), which wasdeveloped by the Structural Engineers Association of SouthernCaliforni

39、a (SEAOSC) to test wood or steel framed shear wallsfor earthquake resistance. The Ref (2) is currently not beingmaintained. There is a considerable breadth of information andvast databases on walls tested under Ref (2). For the purposesof acceptance testing it would be permissible to correlate there

40、sults of the two test methods.X2.1.2 Test Method B:X2.1.2.1 The cyclic protocol for Test Method B was devel-oped for ISO 16670, a method for testing mechanically fas-tened timber joints. The background for this standard is givenin Ref (3-6), which indicates that a unique cyclic displacementor loadin

41、g history will always be a compromise, but one that isconservative for most practical cases should be selected. TheTest Method B test protocol is intended to produce data thatsufficiently describe elastic and inelastic cyclic properties; andtypical failure mode that is expected in earthquake loading

42、.X2.1.3 Selection of Test Method A Versus Test Method B:X2.1.3.1 Test Method A may be applicable to systems whenFME is the yield limit state or for testing slack systems todetermine a lower bound displacement causing hystereticenergy dissipation. Test Method B is a ramped displacementphase that base

43、s the cycles on the percentage of an ultimatedisplacement determined through static tests. Test Method Bmay be more applicable to systems that exhibit linear elasticbehavior where FME is the strength limit state. If the ratio ofDmand FME is less than three, Test Method B may bepreferable. Both test

44、methods are intended to generate similardisplacement amplitudes in order to obtain similar number ofpoints in the envelope curves. The difference is the number ofcycles in each phase (step).X2.2 Test Method CX2.2.1 Test Method C (CUREE protocol) is the latestaddition to the family of cyclic test pro

45、tocols. It was developedbased on the statistical analysis of seismic demands onlight-frame buildings representative of California (in particularLos Angeles) conditions. The CUREE basic loading history isa realistic and conservative representation of the cyclic defor-mation history to which a compone

46、nt of a wood structure likelyis subjected in earthquakes (7, 8). At relatively large deforma-tions (primary cycles exceeding an amplitude of 0.4 D), theamplitude of the primary cycles increases by large steps. Theselarge steps are based on statistics of inelastic time historyresponses. If the purpos

47、e of the experiment is acceptancetesting, then it is permissible to reduce the step size of theprimary cycles with large amplitudes. Smaller step sizes closeto failure may result in a larger capacity (largest amplitude atwhich the acceptance criteria are met), even though they willresult in larger c

48、umulative damage. The reason is that the largestep sizes of the basic loading history permit evaluation ofacceptance only at discrete and large amplitude intervals. Thisstandard permits a reduction in step size only for phases inwhich the amplitude of the primary cycle exceeds D. In thatregime the a

49、mplitude the primary cycle may be increased byaD, with a to be chosen by the user, but a #0.5.X2.2.2 The reference deformation, D, is a measure of thedeformation capacity (Du) of the specimen when subjected tothe cyclic loading history. It is used to control the loadinghistory, and therefore needs to be estimated prior to the test.The estimate can be based on previous experience, the resultsof a monotonic test, or a consensus value that may prove to beuseful for comparing tests of different details or configurations.In CUREE Project (7), the following guidelines were used:5

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1