ImageVerifierCode 换一换
格式:PDF , 页数:15 ,大小:211.47KB ,
资源ID:530594      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-530594.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM E2218-2014 Standard Test Method for Determining Forming Limit Curves《测定形成限制曲线的标准试验方法》.pdf)为本站会员(livefirmly316)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM E2218-2014 Standard Test Method for Determining Forming Limit Curves《测定形成限制曲线的标准试验方法》.pdf

1、Designation: E2218 14Standard Test Method forDetermining Forming Limit Curves1This standard is issued under the fixed designation E2218; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A number in parenth

2、eses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This method gives the procedure for constructing aforming limit curve (FLC) for a metallic sheet material byusing a hemispherical deformation punch test

3、 and a uniaxialtension test to quantitatively simulate biaxial stretch and deepdrawing processes.1.2 FLCs are useful in evaluating press performance bymetal fabrication strain analysis.1.3 The method applies to metallic sheet from 0.5 mm(0.020 in.) to 3.3 mm (0.130 in.).1.4 The values stated in SI u

4、nits are to be regarded as thestandard. The inch-pound equivalents are approximate.1.5 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and

5、determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2A568/A568M Specification for Steel, Sheet, Carbon,Structural, and High-Strength, Low-Alloy, Hot-Rolled andCold-Rolled, General Requirements forE6 Terminology Relating to Methods of Mechanic

6、al TestingE8/E8M Test Methods for Tension Testing of Metallic Ma-terialsE517 Test Method for Plastic Strain Ratio r for Sheet MetalE646 Test Method for Tensile Strain-Hardening Exponents(n -Values) of Metallic Sheet Materials3. Terminology3.1 Terminology E6 shall apply including the special termsuse

7、d in this method shown in 3.2.3.2 Definitions:3.2.1 biaxial stretchinga mode of metal sheet forming inwhich positive strains are observed in all directions at a givenlocation.3.2.1.1 DiscussionSee Fig. 1.3.2.2 deep drawinga metal sheet forming operation inwhich strains on the sheet surface are posit

8、ive in the directionof the punch travel (e1) and negative at 90 to that direction.3.2.2.1 DiscussionDeep drawing, see Fig. 1, occurs in thewalls of a drawn cylinder or the corner walls of a deep drawnpart when the flange clamping force is sufficient to restrainmetal movement and wrinkling, while per

9、mitting the punch topush the center area of the blank into the cavity of the die.Strain conditions that can cause wrinkling or thickening areshown in Fig. 2.3.2.2.2 DiscussionIn forming a square pan shape, metalfrom an area of the flange under a reduced clamping force ispulled into the die to form t

10、he side wall of the part.3.2.3 forming limit diagram (FLD)a graph on which themeasured major (e1) and associated minor (e2) strain combi-nations are plotted to develop a forming limit curve.3.2.3.1 DiscussionSee Fig. 2.3.2.4 forming limit curve (FLC)an empirically derivedcurve showing the biaxial st

11、rain levels beyond which localizedthrough-thickness thinning (necking) and subsequent failureoccur during the forming of a metallic sheet. See Fig. 3.3.2.4.1 DiscussionThe curve of Fig. 3 is considered theforming limit for the material when the metal is subjected to astamping press operation. It was

12、 obtained for a drawing qualityaluminum killed steel sheet. The curve of Fig. 3 correlates withthe upper curve of Fig. 2, a generic curve representing ametallic sheet material with a FLDoof 40 %.3.2.4.2 DiscussionThe strains are given in terms of per-cent major and minor strain measured after formin

13、g a series oftest specimen blanks by using a grid pattern. The gauge lengthsbefore and after forming the part are measured to obtain thepercent strain. The curve for negative (e2) strains will generallyfollow a constant surface area relationship to the associated(e1) strain.3.2.4.3 DiscussionThe ran

14、ge of possible major strain (e1)is from 0 % to over 200 %. The range of possible minor strain(e2) is from 40 % to over +60 %.1This method is under the jurisdiction of ASTM Committee E28 on MechanicalTesting and is the direct responsibility of Subcommittee E28.02 on Ductility andFormability.Current e

15、dition approved April 1, 2014. Published June 2014. Originallypublished in 2002. Last previous edition approved in 2008 as E221802(2008).DOI: 10.1520/E2218-14.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of

16、ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States13.2.5 limiting dome height (LDH) testan evaluative testfor metal sheet deformation capab

17、ility employing a hemi-spherical punch and a circumferential clamping force sufficientto prevent metal from the surrounding flange being pulled intothe die cavity.3.2.6 major strainthe largest strain (e1) developed at agiven location in the sheet specimen surface.3.2.6.1 DiscussionThe major strain (

18、e1) is measured alongthe stretched line of a square pattern, or along the major axis ofthe ellipse resulting from deformation of a circular grid pattern.3.2.7 minor strainthe strain (e2) in the sheet surface in adirection perpendicular to the major strain.3.2.7.1 DiscussionThe minor strain (e2) is m

19、easured at90 to the major strain, along the shorter dimension of the finalrectangular shape of a part formed using a square pattern, orthe shorter axis of the ellipse resulting from deformation of acircular grid pattern. f a square pattern becomes skewed into aparallelogram shape, it shall not be us

20、ed to measure strain.3.2.8 plane strainthe condition in metal sheet formingthat maintains a near zero (0 to +5 %) minor strain (e2) whilethe major strain (e1) is positive (in tension). It is sometimesreferred to as FLDo. See Fig. 2 and Fig. 1.3.3 Definitions of Terms Specific to This Standard:3.3.1

21、grid patterna pattern applied to the surface of ametal sheet to provide an array of precisely spaced gaugepoints prior to forming the metal into a final shape by theapplication of a force.3.3.2 major strainthe largest strain (e1)developed at agiven location in the sheet specimen surface.3.3.2.1 Disc

22、ussionThe major strain (e1) is measured alongthe stretched line of a square pattern, or along the major axis ofthe ellipse resulting from deformation of a circular grid pattern.3.3.3 minor strainthe strain (e2) in the sheet surface in adirection perpendicular to the major strain.3.3.3.1 DiscussionTh

23、e minor strain (e2) is measured at90 to the major strain, along the shorter dimension of the finalrectangular shape of a part formed using a square pattern, orthe shorter axis of the ellipse resulting from deformation of acircular grid pattern.3.3.4 plane strain, FLDothe condition in metal sheetform

24、ing that maintains a near zero (0 to +5 %) minor strain (e2)while the major strain (e1) is positive (in tension)3.3.4.1 DiscussionPlane strain is the most severe defor-mation mode and causes a low point in the forming limit curve(FLC). For convenience, many FLCs are shown with the lowpoint at0%(e2),

25、 however, such an abrupt reversal of (e1) straindoes not occur. See Fig. 3 and Figs. X2.1-X2.3.4. Summary of Test Method4.1 The procedure for determining a forming limit curve(FLC) involves the following:4.1.1 Using a hemispherical punch testing machine (LDHtester). Sometimes called a bulge tester.

26、The LDH test employsa 100 mm (4 in.) diameter machined surface punch.4.1.1.1 A universal testing machine for tension load appli-cation and a sub-press for against the metal sheet surfaceloading with a ball punch of 75 mm (3 in.), 100 mm (4 in.), orlarger diameter can be used in place of the LDH test

27、 equip-ment.4.1.2 Preparing a series of grid pattern blanks with differentwidths and a common length suitable for being securelygripped in the test apparatus.4.1.2.1 All specimens for a series shall have their longdimension in the same orientation, relative to the originalprocess rolling direction o

28、f the sample and that direction notedin the report.4.1.3 Lubricating the contact surfaces of the blank andpunch for the hemispherical punch test.FIG. 1 Possible Changes in Shape of the Grid Pattern Caused by Forming Operations on Metallic Sheet ProductsE2218 1424.1.4 Securely clamping the flanges of

29、 a blank in theserrated, or lock bead, blank-holder dies of the hemisphericalpunch test.4.1.5 Stretching the central area of the blank biaxially overthe nose of the hemispherical punch, or pulling in the tensiontest, without interrupting the force.4.1.5.1 Negative (e2) strains may be obtained using

30、shearednarrow strips stretched over the punch of the LDH tester.4.1.6 Stopping the punch advance or the force when alocalized through thickness neck (localized necking) isobserved, if possible, or as soon as the specimen fractures.4.1.7 Removing the specimen from the testing machinegrips and then pr

31、oceeding with another, different width, blankin the test series of the same material.4.1.8 Measuring and recording the (e1) and the (e2) strainsof the grid pattern on the surface area near the neck of all thetest specimens for the series.4.1.8.1 These measurements may include good (no local-ized nec

32、king), marginal (localized necking), and fracture areas.4.1.8.2 If other than good (no localized necking) locationsare included, each measured point shall be visually evaluatedand noted as illustrated in Fig. 3.4.1.9 Plotting the measured strain combinations on a FLD.See Fig. 3.4.1.10 Establishing t

33、he forming limit curve (FLC) be con-necting the uppermost good (no localized necking) (e1) strainsover the associated (e2) strain range used in the study.NOTE 1The upper curve is representative of the forming limit. Strains below the lower curve do not occur during forming metallic sheet productsin

34、the most stamping press operations. Curves to the left of % e2= 0 are for constant area of the sheet surface.FIG. 2 Forming Limit DiagramE2218 1434.1.10.1 For practical purposes, the specimens that havebeen strained to a localized neck-down, or through thicknessfracture, condition may be measured at

35、 a location on theopposite side of the hemispherical bulge from the fracture, in agood (no localized necking) location, to obtain values toestablish the FLC.Cold Rolled Drawing Quality Aluminum Killed SteelLongitudinal Mechanical PropertiesThicknessYieldStrengthTensileStrength%Elin 50mmn Value r Val

36、uemm (in.) MPa (ksi) MPa (ksi)0.866 (0.034) 163.4 (23.7) 304.7 (44.2) 43.5 0.230 1.71Chemical CompositionElement C S N Mn Al P SiPercent 0.035 0.006 0.006 0.19 0.29 0.006 0.004FIG. 3 Forming Limit Curve (FLC) for a Cold Rolled Drawing Quality Aluminum Killed Steel Sheet.E2218 1444.1.10.2 Another acc

37、eptable procedure is to measure thegrid near the necked, or fracture, location and identify thesedata points in determining the forming limit curve. Thisprocedure was used in locating the FLC of Fig. 3.4.1.10.3 Establishing the FLC depends on judgement. Notethat in Fig. 3 there are several good (no

38、localized necking) datapoints above the FLC and two marginal points below the FLC.4.1.10.4 The FLC curve shall not include an area wherethere is a preponderance of marginal data points at an (e1)strain level below the measured good (no localized necking)data points.5. Significance and Use5.1 A formi

39、ng limit curve (FLC) defines the maximum(limiting) strain that a given sample of a metallic sheet canundergo for a range of forming conditions, such as deepdrawing, stretching and bending over a radius in a press and diedrawing operation, without developing a localized zone ofthinning (localized nec

40、king) that would indicate incipientfailure.5.1.1 FLCs may be obtained empirically by using a labora-tory hemispherical punch biaxial stretch test and also a tensiontest to strain metal sheet specimens from a material samplebeyond their elastic limit, just prior to localized necking andfracture.5.1.1

41、.1 Since this cannot be predetermined, one or bothsurfaces of specimens are covered with a grid pattern of gaugelengths usually as squares or small diameter circles, by asuitable method such as scribing, photo-grid, or electro-etching, and then each specimen is formed to the point oflocalized neckin

42、g, or fracture.5.1.2 Strains in the major (e1) and minor (e2) directions aremeasured using points on the grid pattern in the area of thelocalized necking or fracture.5.1.2.1 Blanks of varied widths are used to produce a widerange of strain states in the minor (e2) direction.5.1.2.2 The major (e1) st

43、rain is determined by the capacityof the material to be stretched in one direction as simultaneoussurface forces either stretch, do not change, or compress, themetal in the (e2) direction.5.1.2.3 In the tension test deformation process, the (e2)strains are negative and the metal is narrowed both thr

44、ough thethickness and across its width.5.1.3 These strains are plotted on a forming limit diagram(FLD) and the forming limit curve (FLC) is drawn to connectthe highest measured (e1and e2) strain combinations thatinclude good data points.5.1.3.1 When there is intermixing and no clear distinctionbetwe

45、en good and necked data points, a best fit curve isestablished to follow the maximum good data points as theFLC.5.1.4 The forming limit is established at the maximum (e1)strain attained prior to necking.5.1.5 The FLC defines the limit of useful deformation informing metallic sheet products.5.1.6 FLC

46、s are known to change with material (specificallywith the mechanical or formability properties developed duringthe processing operations used in making the material), and thethickness of the sheet sample.5.1.6.1 The strain hardening exponent (n value), defined inTest Method E646, affects the forming

47、 limit. A high n valuewill raise the limiting major strain (e1), allowing more stretchunder positive (+e2) strain conditions.5.1.6.2 The plastic strain ratio (r value), defined in TestMethod E517, affects the capacity of a material to be deepdrawn. A high r value will move the minor (e2) strain into

48、 aless severe area to the left of the FLDo, thus permitting deeperdraws for a given major (e1) strain.5.1.6.3 The thickness of the material will affect the FLCsince a thicker specimen has more volume to respond to theforming process.5.1.6.4 The properties of the steel sheet product used indeterminin

49、g the FLC of Fig. 3 included the n value and the rvalue.5.1.7 FLCs serve as a diagnostic tool for material strainanalysis and have been used for evaluations of stampingoperations and material selection.5.1.8 The FLC provides a graphical basis for comparisonwith strain distributions on parts formed by sequential pressoperations.5.1.9 The FLC obtained by this method follows a constantproportional strain path where there is a fixed ratio of major(e1) to minor (e2) strain.5.1.9.1 There is no interrupted loading, or reversal ofstraining, but the rate of

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1