ImageVerifierCode 换一换
格式:PDF , 页数:11 ,大小:110.36KB ,
资源ID:531183      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-531183.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM E2465-2011e1 Standard Test Method for Analysis of Ni-Base Alloys by Wavelength Dispersive X-Ray Fluorescence Spectrometry《用 X 射线光谱法分析镍基合金的标准试验方法》.pdf)为本站会员(ownview251)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM E2465-2011e1 Standard Test Method for Analysis of Ni-Base Alloys by Wavelength Dispersive X-Ray Fluorescence Spectrometry《用 X 射线光谱法分析镍基合金的标准试验方法》.pdf

1、Designation: E2465 111Standard Test Method forAnalysis of Ni-Base Alloys by Wavelength Dispersive X-RayFluorescence Spectrometry1This standard is issued under the fixed designation E2465; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revis

2、ion, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1NOTEEditorial corrections were made in August 2011.1. Scope1.1 This test method covers the analysis of Ni-base a

3、lloysby wavelength dispersive X-ray Fluorescence Spectrometry forthe determination of the following elements:Element Concentration Range %Manganese 0.17 to 1.6Phosphorus 0.005 to 0.015Silicon 0.02 to 0.6Chromium 11 to 22Nickel 31 to 77Aluminum 0.12 to 1.3Molybdenum 0.045 to 10Copper 0.014 to 2.5Tita

4、nium 0.20 to 3.0Niobium 1.43 to 5.3Iron 2 to 46Tungsten 0.016 to 0.50Cobalt 0.014 to 0.35NOTE 1Unless exceptions are noted, concentration ranges can beextended by the use of suitable reference materials. Once these elementranges are extended they must be verified by some experimental means.This coul

5、d include but not limited to Gage Repeatability and Reproduc-ibility studies and/or Inter-laboratory Round Robin studies. Once thesestudies are completed, they will satisfy the ISO 17025 requirements forcapability.1.2 This standard does not purport to address all of thesafety concerns, if any, assoc

6、iated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and to determine theapplicability of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2E135 Terminology Relating to Analytical Chemistry forMeta

7、ls, Ores, and Related MaterialsE305 Practice for Establishing and Controlling AtomicEmission Spectrochemical Analytical CurvesE1361 Guide for Correction of Interelement Effects inX-Ray Spectrometric AnalysisE1601 Practice for Conducting an Interlaboratory Study toEvaluate the Performance of an Analy

8、tical MethodE1622 Practice for Correction of Spectral Line Overlap inWavelength-Dispersive X-Ray Spectrometry32.2 Other Documents:ISO 17025 General requirements for the competence oftesting and calibration laboratories3. Terminology3.1 Definitions: For definitions of terms used in this testmethod, r

9、efer to Terminology E135.4. Summary of Test Method4.1 The test specimen is finished to a clean, uniform surface,then irradiated with an X-ray beam of high energy. Thesecondary X-rays produced are dispersed by means of crystalsand the intensities are measured by suitable detectors atselected waveleng

10、ths. The outputs of the detectors in voltagepulses are counted. Radiation measurements are made based onthe time required to reach a fixed number of counts, or on thetotal counts obtained for a fixed time (generally expressed incounts or kilocounts per unit time).4.2 Concentrations of the elements a

11、re determined by relat-ing the measured radiation of unknown specimens to analyticalcurves prepared with suitable reference materials. Either afixed-channel (simultaneous) spectrometer or a sequentialspectrometer, or an instrument combining both fixed-channelsand one or more goniometers shall be use

12、d.5. Significance and Use5.1 This procedure is suitable for manufacturing control andfor verifying that the product meets specifications. It provides1This test method is under the jurisdiction of ASTM Committee E01 onAnalytical Chemistry for Metals, Ores, and Related Materials and is the directrespo

13、nsibility of Subcommittee E01.08 on Ni and Co and High Temperature Alloys.Current edition approved May 1, 2011. Published June 2011. Originallyapproved in 2006. Last previous edition approved in 2006 as E2465 06. DOI:10.1520/E2465-11.2For referenced ASTM standards, visit the ASTM website, www.astm.o

14、rg, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3Withdrawn. The last approved version of this historical standard is referencedon www.astm.org.1Copyright ASTM International, 1

15、00 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.rapid, multi-element determinations with sufficient accuracy toassure product quality. The analytical performance data in-cluded may be used as a benchmark to determine if similarX-ray spectrometers provide equivalent

16、 precision and accu-racy, or if the performance of a particular spectrometer haschanged.6. Interferences6.1 Interelement effects, or matrix effects, exist for some ofthe elements listed. Mathematical correction may be used tosolve for these elements. Various mathematical correctionprocedures are com

17、monly utilized. See Guide E1361 andPractice E1622. Any of these procedures that achieves analyti-cal accuracy equivalent to that provided by this test method isacceptable.7. Apparatus7.1 Specimen Preparation Equipment:7.1.1 Surface Grinder or Sander With Abrasive Belts orDisks, or Lathe, capable of

18、providing a flat, uniform surface onthe reference materials and test specimens. Aluminum oxideand zirconium oxide belts and discs with a grit size of between60 and 180 have been found suitable.7.2 Excitation Source:7.2.1 Tube Power Supply, providing a constant potential orrectified power of sufficie

19、nt energy to produce secondaryradiation of the specimen for the elements specified. Thegenerator may be equipped with a line voltage regulator andcurrent stabilizer.7.2.2 X-ray Tubes, with targets of various high-purity ele-ments that are capable of continuous operation at requiredpotentials and cur

20、rents and that will excite the elements to bedetermined.7.3 Spectrometer, designed for X-ray fluorescence analysisand equipped with specimen holders and a specimen chamber.The chamber shall contain a specimen spinner, and must beequipped for vacuum or helium-flushed operation for thedetermination of

21、 elements of atomic number 20 (calcium) orlower.7.3.1 Analyzing Crystals, flat or curved crystals with opti-mized capability for the diffraction of the wavelengths ofinterest. The use of synthetic multilayer structures can also befound in some state-of-the-art-equipment.7.3.2 Collimators or Slits, f

22、or controlling the divergence ofthe characteristic X-rays. Use in accordance with the equip-ment manufacturers recommendations.7.3.3 Detectors, sealed-gas, gas-flow scintillation countersor equivalent.7.3.4 Vacuum System, providing for the determination ofelements whose radiation is absorbed by air

23、(for example,silicon, phosphorus, and sulfur). The system shall consist of avacuum pump, gage, and electrical controls to provide auto-matic pump down of the optical path, and maintain a controlledpressure, usually 13Pa (100 mm Hg) or less, controlled to 63Pa (20 mm Hg). A helium-flushed system is a

24、n alternative to avacuum system.7.4 Measuring System, consisting of electronic circuits ca-pable of amplifying and integrating pulses received from thedetectors. For some measurements, a pulse height selector inconjunction with the detectors may be used to remove highorder lines and background. The

25、system shall be equipped withan appropriate device.8. Reagents and Materials8.1 Detector GasesOnly gas-flow proportional countersrequire a detector gas. Use the gas and purity of gas specifiedby the instrument manufacturer. Typical gases specified includeP-10 or P-5. P-10 consists of a mixture of 90

26、 % argon and 10% methane and P-5 consists of a mixture of 95 % argon and 5% methane. Other gases may be specified as well.9. Reference Materials9.1 Certified Reference Materials are available from na-tional metrology institutes, international research institutes,and commercial sources.9.2 Reference

27、Materials with matrices similar to that of thetest specimens and containing varying amounts of the elementsin the scope of this test method may be used provided theyhave been analyzed using validated standard methods of test.These reference materials shall be homogeneous and free ofvoids and porosit

28、y.9.3 The reference materials shall cover the concentrationranges of the elements being sought. A minimum of threereference materials shall be used for each element. A greaternumber of calibrants may be required if the analyst chooses toperform mathematical corrections for interelement effects. SeeG

29、uide E1361.10. Hazards10.1 OSHA Standards for ionizing radiation4shall be ob-served at all X-ray emission spectrometer installations. It isalso recommended that operating and maintenance personnelfollow the guidelines of safe operating procedures given incurrent handbooks and publications from Natio

30、nal Institute ofStandards and Technology and the U.S. Government PrintingOffice, or similar handbooks on radiation safety.10.2 Exposure to excessive quantities of high energy radia-tion such as those produced by X-ray spectrometers is injuriousto health. The operator should take appropriate actions

31、to avoidexposing any part of their body, not only to primary X-rays, butalso to secondary or scattered radiation that might be present.The X-ray spectrometer should be operated in accordance withthe regulations governing the use of ionizing radiation. Manu-facturers of X-ray fluorescence spectromete

32、rs generally buildappropriate shielding/safety interlocks into X-ray equipmentduring manufacturing that minimize the risk of excessiveradiation exposure to operators. Operators should not attemptto bypass or defeat these safety devices. Only authorizedpersonnel should service X-ray spectrometers.4Fe

33、deral Register, Vol. 36, No. 105, May 1971, Section 1910.96 or of latestissue of Subpart G, or National Bureau of Standards Handbook 111, ANSIN43.2-1971, available from Superintendent of Documents, U.S.Government Print-ing Office, Washington DC 20025.E2465 111210.3 Monitoring Devices, either film ba

34、dges or dosimeters5may be worn by all operating and maintenance personnel.Safety regulations shall conform to applicable local, state, andfederal regulations.11. Preparation of Reference Materials and TestSpecimens11.1 The analyst must choose a measurement area ordiameter from the options built into

35、 the spectrometer. All testspecimens and reference materials must have a flat surface ofgreater diameter than the chosen viewed area.11.2 Prepare the reference materials and test specimens toprovide a clean, flat uniform surface to be exposed to the X-raybeam. One surface of a reference material may

36、 be designatedby the producer as the certified surface. The same preparationmedium shall be used for all reference materials and testspecimens.11.3 Refinish the surface of the reference materials and testspecimens as needed to eliminate oxidation.12. Preparation of Apparatus12.1 Prepare and operate

37、the spectrometer in accordancewith the manufacturers instructions.NOTE 2It is not within the scope of this test method to prescribeminute details relative to the preparation of the apparatus. For a descrip-tion and specific details concerning the operation of a particular spectrom-eter, refer to the

38、 manufacturers manual.12.1.1 Start-upTurn on the power supply and electroniccircuits and allow sufficient time for instrument warm-up priorto taking measurements.12.2 Tube Power SupplyThe power supply conditionsshould be set in accordance with the manufacturers recom-mendations.12.2.1 The voltage an

39、d current established as optimum forthe X-ray tube power supply in an individual laboratory shallbe reproduced for subsequent measurements.12.3 Proportional Counter Gas FlowWhen a gas-flowproportional counter is used, adjust the flow of the P-10 gas inaccordance with the equipment manufacturers inst

40、ructions.When changing P-10 tanks, the detectors should be adequatelyflushed with detector gas before the instrument is used. Afterchanging P-10 tanks, check the pulse height selector inaccordance with the manufacturers instructions.12.4 Measurement ConditionsThe K-L2,3(Ka) lines foreach element are

41、 used, except for tungsten. For tungsten, theL3-M5(La) line is used. When using a sequential spectrometer,measurement angles shall be calibrated in accordance with themanufacturers guidelines.12.4.1 Crystals and DetectorsThe following crystals anddetectors are suggested for the elements indicated:El

42、ement Crystal DetectorChromium L1,L2 SP,Sc,FPCobalt L1,L2 SP,Sc,FPCopper L1,L2 SP,Sc,FPManganese L1,L2 SP,Sc,FPMolybdenum L1,L2 ScNickel L1,L2 SP,Sc,FPNiobium L1,L2 ScPhosphorus Ge FP,SPSilicon PET,InSb FP,SPTitanium L1,L2 SP,Sc,FPAluminum PET Sc,FPIron L1,L2 SP,ScTungsten L1,L2 SP,ScL1 = LiF200 SP

43、= Sealed ProportionalL2 = LiF220 Sc = ScintillationFP = Flow Proportional12.4.2 Counting TimeCollect a sufficient number ofcounts so that the precision of the analysis will not be affectedby the variation in the counting statistics. A minimum of10,000 counts is required for one percent relative prec

44、ision ofthe counting statistics and 40,000 for one-half percent relative.If fixed time measurements are used, the measurement timescan be derived from the measured intensity (counts per second)and the minimum number of required counts (that is, 10,000 or40,000). Alternatively, measurement times of 1

45、0 s for each ofthe elements are a good starting point.13. Calibration and Standardization13.1 Calibration (Preparation of Analytical Curves)Using the conditions given in Section 12, measure a series ofreference materials that cover the required concentrationranges. Use at least three reference mater

46、ials for each element.Prepare an analytical curve for each element being determined(refer to Practice E305). For information on correction ofinterelement effects in X-ray Spectrometric Analysis refer toGuide E1361. Information on correction of spectral lineoverlap in wavelength dispersive X-ray spec

47、trometry can befound in Practice E1622.13.2 Standardization (Analytical Curve Adjustment)Using a control reference material, check the calibration of theX-ray spectrometer at a frequency consistent with SPC practiceor when the detector gas or major components have beenchanged. If the calibration che

48、ck indicates that the spectrom-eter has drifted, make appropriate adjustments in accordancewith the instructions in the manufacturers manual. Refer toPractice E305 for frequency of verification of standardization.14. Procedure14.1 Specimen LoadingPlace the reference materials andtest specimens in th

49、e appropriate specimen holding container.If the spectrometer is equipped with an automated loadingdevice, loading and unloading all specimens from the sameholder may improve repeatability. The container shall have asuitable opening to achieve the required precision in an5Available from Siemens Gammasonics, Inc., 2000 Nuclear Drive, Des PlainesIl 60018.E2465 1113acceptable amount of time. The holder must be equipped tokeep the specimen from moving inside the holder.14.2 ExcitationExpose the specimen to primary X radia-tion in accordance with Section 12.14.

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1