ImageVerifierCode 换一换
格式:PDF , 页数:5 ,大小:86.53KB ,
资源ID:531812      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-531812.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM E2748-2012 Standard Guide for Fire-Resistance Experiments《耐火实验的标准指南》.pdf)为本站会员(proposalcash356)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM E2748-2012 Standard Guide for Fire-Resistance Experiments《耐火实验的标准指南》.pdf

1、Designation: E2748 12An American National StandardStandard Guide forFire-Resistance Experiments1This standard is issued under the fixed designation E2748; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A

2、 number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.INTRODUCTIONThis guide provides a means for ensuring comparability of findings among different researchersconducting fire-resistance experiments e

3、mploying innovative and creative variations to standard testmethods. This guide is intended to bring uniformity and consistency to tests and reports coveringfire-resistance research that is generally conducted as a variation of Test Methods E119. Its provisionsare voluntary and users are free to pic

4、k and choose from the provisions herein provided. Theoverriding goal is to make it possible to begin to provide data that ultimately can be used in fire safetyengineering and fire-resistance modeling as those fields evolve. When the purpose of the research isto study the effect of changing specific

5、individual variables on the outcome of Test Methods E119fire-resistance tests, sound research practices dictate that only one variable should be changed at atime.1. Scope1.1 This guide covers the conduct of fire-resistance testsusing conditions different than those addressed in Test MethodsE119. Thi

6、s guide also addresses the reporting of data derivedfrom those tests.1.2 This guide does not provide or generate fire-resistanceratings suitable for determining compliance with code orregulatory requirements comparable to those resulting fromtests conducted in accordance with Test Methods E119.1.3 T

7、he values stated in SI units are to be regarded asstandard. The values in parentheses are for information only.1.4 This guide is used to measure and describe the responseof materials, products, or assemblies to heat and flame undercontrolled conditions, but does not by itself incorporate allfactors

8、required for fire hazard or fire risk assessment of thematerials, products, or assemblies under actual fire conditions.1.5 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-pri

9、ate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2E119 Test Methods for Fire Tests of Building Constructionand MaterialsE176 Terminology of Fire StandardsE603 Guide for Room Fire ExperimentsE1529 Test Me

10、thods for Determining Effects of LargeHydrocarbon Pool Fires on Structural Members and As-semblies2.2 Other Standards:ISO 834-1 Fire Resistance Tests Elements of BuildingConstruction Part 1: General Requirements3NFPA 251 Standard Methods of Tests of Fire Resistance ofBuilding Construction and Materi

11、als43. Terminology3.1 Definitions: For definitions of terms used in this guide,refer to Terminology E176.1This guide is under the jurisdiction ofASTM Committee E05 on Fire Standardsand is the direct responsibility of Subcommittee E05.11 on Fire Resistance.Current edition approved April 1, 2012. Publ

12、ished April 2012. Originallyapproved in 2010 as E274810. Last previous edition approved in 2011 asE274811. DOI: 10.1520/E2748-12.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume informati

13、on, refer to the standards Document Summary page onthe ASTM website.3Available from International Organization for Standardization, P.O. Box 56,CH-1211, Geneva 20, Switzerland.4Available from National Fire Protection Association (NFPA), 1 BatterymarchPark, Quincy, MA 02169-7471, http:/www.nfpa.org.1

14、Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.4. Significance and Use4.1 The methods and procedures set forth in this guide relateto the conduct and reporting of fire-resistance tests obtainedfrom particular fire-resistance tested s

15、pecimens tested usingconditions different than those addressed by Test MethodsE119.4.2 Data derived from fire tests conducted and reportedunder this guide are useful for general fire research and aspotential input data for use in fire models.4.3 It is necessary that users of this guide have knowledg

16、eand understanding of the provisions of Test Methods E119,including those pertaining to conditions of acceptance in orderto understand how the alternative test conditions relate to thosespecified in Test Methods E119.4.4 Users of this guide should be aware that tests conductedusing exposure conditio

17、ns different than those specified in TestMethods E119 do not provide or generate fire resistance ratingssuitable for determining compliance with code or regulatoryrequirements.4.4.1 In Test Methods E119, standard test specimens aresubjected to specific exposure conditions. Substitution ofdifferent e

18、xposure conditions can change the measured fire-test-response characteristics of a test specimen. Therefore, thedata are valid for only the alternative exposure conditions used.5. General Principles5.1 Except as specifically modified herein, fire-resistancetests should be conducted using the test fu

19、rnaces, exposureconditions, test specimens, instrumentation, and acceptancecriteria set forth in Test Methods E119.5.2 Although it is possible to vary many variables at onetime, and it may be desirable to do so when evaluating theresponse of a specimen to specific design fire conditions, it isusuall

20、y desirable to vary only one parameter at a time whencomparing results from two or more tests or when evaluatingthe effect on fire resistance of changing a specific variable.5.3 LimitationsThe test data is valid for only the speci-men and parameters used in the test.6. Alternative Time-Temperature C

21、urves6.1 The provisions in this section are applicable to the use ofalternative time-temperature curves that are different from thetime-temperature curve specified in Test Methods E119.6.1.1 When the time-temperature curve specified in TestMethods E119 is used, it should be so stated in the report.N

22、OTE 1There are a number of recognized time-temperature curves inuse in fire-resistance test standards around the world.6.2 When a recognized or published time-temperature curveis used, the reference in which the curve is described should becited and the time-temperature curve should be reported.6.3

23、Fire safety engineering and computer modeling aremethods whereby non-standard time-temperature curves can bederived to represent specific design conditions.6.3.1 When these design fires are used as the basis of atime-temperature curve, a table or equation representing thecurve should be reported.7.

24、Alternative Pressure Differentials7.1 The provisions in this section are applicable to the use ofspecific furnace pressure differentials.NOTE 2There are a number of recognized or published furnacepressure differentials in use in fire test standards around the world.7.2 When a recognized or published

25、 furnace pressure dif-ferential is used, the reference in which the pressure differentialis described should be cited and the pressures should bereported.7.3 When other pressure differentials are used for explor-atory research or to replicate actual fire conditions, or for anyother reason, they shou

26、ld be described and should be reported.7.4 Furnace pressure differentials should be measured asdescribed in NFPA 251.8. Alternative Test Specimens8.1 The provisions in this section are applicable to the use ofalternative test specimens that are different from the testspecimens specified in Test Meth

27、ods E119.8.2 Test specimen dimensions, that is, height and width forwalls, length and width for horizontal specimens, or lengths forcolumns or beams, should be reported and the method used tomodify the furnace opening to accommodate the specimen sizeshould be reported.8.3 When test specimens having

28、exposed and unexposedsurfaces that are not parallel to each other or that are not flat(planar) are tested, their maximum and minimum thicknesses,and radii, if curved, should be reported.8.4 When test specimens having one or more designedprotrusions or indentations (pilasters, alcoves, etc.) either o

29、nthe fire side, the unexposed side, or both, are tested, the size,shape, location, and dimensions of each protrusion or indenta-tion should be described and reported.8.5 When test specimens exceeding the depth of the speci-men mounting frame are tested, the method(s) of protecting theportion of the

30、test specimen extending beyond the frame shouldbe described and reported.9. Alternative Instrumentation Furnace Environment9.1 When alternative instrumentation is used in addition tothe standard instrumentation specified in Test Methods E119,the alternative instrumentation should be spaced and mount

31、edso as to not interfere with the standard instrumentation.9.2 Furnace Temperature Measurement:9.2.1 When the furnace control temperature measurementmethod (that is, shielded thermocouples) specified in TestMethods E119 is used it should be so stated in the report.9.2.2 When Directional Flame Thermo

32、meters or plate ther-mometers are used they should be spaced as described in9.2.2.1 through 9.2.2.2.NOTE 3Directional Flame Thermometers are described in Test Meth-ods E1529. Specifications for plate thermometers are provided inISO 834-1.9.2.2.1 There should be nine plate thermometers equallydistrib

33、uted across the test specimen surface.9.2.2.2 Directional Flame Thermometers and Plate ther-mometers should be located 4 6 0.2 in. (100 6 5 mm) from theexposed surface of the test specimen.E2748 1229.2.3 Other methods, sensors, or measurement devices formonitoring the furnace temperature should be d

34、escribed andreported.9.2.4 Any special mounting methods used for plate ther-mometers or other temperature measuring devices should bedescribed and reported.9.2.5 The locations of furnace temperature measuring de-vices should be reported.9.3 Heat Flux Measurement:9.3.1 When heat flux measurements are

35、 taken in addition tofurnace temperature control measurements, the methods, in-strumentation, and heat flux profile should be described andreported.9.3.1.1 Any special mounting methods should be describedand reported.9.3.2 The locations of heat flux measurement devicesshould be reported.9.4 Pressure

36、 Measurement:9.4.1 When furnace pressures are measured or controlled,the methods, instrumentation, and pressure differentials shouldbe reported.9.4.2 Furnace pressure should be measured using the tubesensor described in ISO 834-1 and NFPA 251.9.4.2.1 In a vertical furnace, pressure should be measure

37、d ata minimum of two locations. The measuring locations shouldbe separated by a minimum of13 the test specimen height.9.4.2.2 In a horizontal furnace, pressure should be measuredat a single location a nominal 4 6 0.2 in. (100 6 5 mm) belowthe exposed surface of the test specimen.9.4.3 Any special mo

38、unting methods should be describedand reported.9.4.4 The locations of pressure measurement devices shouldbe reported.9.5 Furnace Oxygen Concentration:9.5.1 When furnace oxygen concentration is being moni-tored, it should be measured in the furnace stack.9.5.1.1 Oxygen concentration should be measure

39、d using aparamagnetic-type oxygen analyzer.9.5.1.2 The sampling probe should be similar to the sam-pling probe used in duct measurements of hood calorimetersdescribed in Guide E603.9.5.1.3 Gas samples should be continuously drawn out ofthe stack through a sampling line.9.5.2 The oxygen concentration

40、 profile should be reported.9.6 Other Measurement Instrumentation:9.6.1 Additional instrumentation such as load cells, addi-tional thermocouples, moisture content measurement devices,motion sensors, or other instrumentation not described orspecified in Test Methods E119 should be fully described and

41、reported.10. Alternative Instrumentation Specimen10.1 When alternative instrumentation is used in addition tothe standard instrumentation specified in Test Methods E119,the alternative instrumentation should be spaced and mountedso as to not interfere with the standard instrumentation.10.2 Unexposed

42、 Surface Temperature Measurement forWalls and Floor/Ceilings:10.2.1 When the unexposed surface temperature measure-ment methods specified in Test Methods E119 are used, itshould be so stated in the report.10.2.2 Other methods, sensors, or measurement devicesused for monitoring the unexposed surface

43、temperature shouldbe described and reported.10.2.2.1 Any special mounting methods should be describedand reported.10.2.3 The locations of temperature measuring devicesshould be reported.10.3 Heat Flux Off the Unexposed Surface of Walls andFloor/Ceilings:10.3.1 When total heat flux off the unexposed

44、surface ismeasured, it should be measured as described in 10.3.1.1through 10.3.1.3.10.3.1.1 Total heat flux coming off the unexposed surfaceshould be measured using a Schmidt-Boetler-type water-cooled total heat flux gauge.10.3.1.2 The heat flux gauge should be placed near thecenter of the unexposed

45、 surface of the specimen and as close tothe specimen surface as practical.10.3.1.3 When the test specimen contains a transparentelement, an additional heat flux gauge should be placed nearthe center of the transparent element and as close as practicalto the surface of the transparent element.10.4 Te

46、mperature Profile Through Test Specimens:10.4.1 When the temperature profile of test specimens ismonitored, it should be monitored as described in 10.4.1.1through 10.4.1.4.10.4.1.1 Temperatures should be measured through thethickness of the test specimen at not less than two locationsrepresentative

47、of each major heat-transfer path within thespecimen.10.4.1.2 The surface temperature on the exposed sideshould be measured with a 24-gauge, Type K bare beadthermocouple placed in contact with the exposed surface of thetest specimen.10.4.1.3 The surface temperature on the unexposed sideshould be meas

48、ured using an optical pyrometer suitable formeasuring temperatures on the unexposed side.10.4.1.4 Internal temperatures should be measured usingInconel-sheathed Type K thermocouples with a sheath diam-eter of 0.04 in. (1.0 mm).10.5 Gas Temperature Measurement:10.5.1 When gas temperatures are measure

49、d they should bemeasured as described in 10.5.1.1 through 10.5.1.3.10.5.1.1 Gas temperatures should be measured using aspi-rated thermocouples.NOTE 4Aspirated thermocouples are described in Guide E603.10.5.1.2 Gas temperatures should be measured on the ex-posed and unexposed surfaces at each location where atemperature profile is being monitored.10.5.1.3 Aspirated thermocouples should be placed as closeto the surface as possible.10.6 Temperature Measurement for Beams and Columns:10.6.1 When the beam and column temperature measure-ment methods specified in Test Methods

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1