ImageVerifierCode 换一换
格式:PDF , 页数:5 ,大小:68.99KB ,
资源ID:533598      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-533598.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM E815-2017b red 7500 Standard Test Method for Determination of Calcium Fluoride in Fluorspar by EDTA Complexometric Titrimetry《用EDTA络合滴定法测定氟石中氟化钙含量的标准试验方法》.pdf)为本站会员(花仙子)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM E815-2017b red 7500 Standard Test Method for Determination of Calcium Fluoride in Fluorspar by EDTA Complexometric Titrimetry《用EDTA络合滴定法测定氟石中氟化钙含量的标准试验方法》.pdf

1、Designation: E815 17aE815 17bStandard Test Method forDetermination of Calcium Fluoride in Fluorspar by EDTAComplexometric Titrimetry1This standard is issued under the fixed designation E815; the number immediately following the designation indicates the year oforiginal adoption or, in the case of re

2、vision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers the determination of calcium fluoride in acid-grade fluorspar and other ty

3、pes of fluorspar that canbe rendered soluble by the procedure described in the test method.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This test method has been evaluated in accordance with Practice E1601 and Guide

4、 E1763. Unless otherwise noted in theprecision and bias section, the lower limit in the scope of each method specifies the lowest analyte content that may be analyzedwith acceptable error (defined as a nominal 5 % risk of obtaining a 50 % or larger relative difference in results on the same testsamp

5、le in two laboratories).1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibilityof the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability ofregulatory li

6、mitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardizationestablished in the Decision on Principles for the Development of International Standards, Guides and Recommendations issuedby the World Trade Organization T

7、echnical Barriers to Trade (TBT) Committee.2. Referenced Documents2.1 ASTM Standards:2D1193 Specification for Reagent WaterE29 Practice for Using Significant Digits in Test Data to Determine Conformance with SpecificationsE50 Practices forApparatus, Reagents, and Safety Considerations for ChemicalAn

8、alysis of Metals, Ores, and Related MaterialsE135 Terminology Relating to Analytical Chemistry for Metals, Ores, and Related MaterialsE276 Test Method for Particle Size or ScreenAnalysis at No. 4 (4.75-mm) Sieve and Finer for Metal-Bearing Ores and RelatedMaterialsE882 Guide for Accountability and Q

9、uality Control in the Chemical Analysis LaboratoryE1601 Practice for Conducting an Interlaboratory Study to Evaluate the Performance of an Analytical MethodE1763 Guide for Interpretation and Use of Results from Interlaboratory Testing of Chemical Analysis Methods (Withdrawn2015)33. Terminology3.1 De

10、finitionsFor definitions of terms used in this test method, refer to Terminology E135.4. Summary of Test Method4.1 The sample is decomposed by digesting with HNO3 and HClO4 and the fluorine is expelled by fuming. The residue isdissolved in dilute HCl, the solution made alkaline, and the calcium titr

11、ated with standard EDTA solution. Calcium present ascarbonate is determined in a separate sample with EDTA solution, after extracting the former with dilute acetic acid. A correction1 This test method is under the jurisdiction of ASTM Committee E01 on Analytical Chemistry for Metals, Ores, and Relat

12、ed Materials and is the direct responsibility ofSubcommittee E01.02 on Ores, Concentrates, and Related Metallurgical Materials.Current edition approved Sept. 15, 2017Nov. 15, 2017. Published October 2017December 2017. Originally approved in 1981. Last previous edition approved in 2017 asE815 17.17a.

13、 DOI: 10.1520/E0815-17A.10.1520/E0815-17B.2 For referencedASTM standards, visit theASTM website, www.astm.org, or contactASTM Customer Service at serviceastm.org. For Annual Book of ASTM Standardsvolume information, refer to the standards Document Summary page on the ASTM website.3 The last approved

14、 version of this historical standard is referenced on www.astm.org.This document is not an ASTM standard and is intended only to provide the user of an ASTM standard an indication of what changes have been made to the previous version. Becauseit may not be technically possible to adequately depict a

15、ll changes accurately, ASTM recommends that users consult prior editions as appropriate. In all cases only the current versionof the standard as published by ASTM is to be considered the official document.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2

16、959. United States1for calcium fluoride, solubilized by dilute acetic acid digestion, is applied by determining the fluoride in the acetic acid extract byfluoride ion-selective electrode. The CaF2 content is then calculated.5. Significance and Use5.1 Fluorspar is used as a flux in the steelmaking an

17、d glass industries, and in the manufacture of HF.5.2 This test method is intended to be used for compliance with compositional specifications for calcium fluoride content. It isassumed that all who use these procedures will be trained analysts capable of performing common laboratory procedures skill

18、fullyand safely. It is expected that work will be performed in a properly equipped laboratory and that proper waste disposal procedureswill be followed. Appropriate quality control practices must be followed such as those described in Guide E882.6. Interferences6.1 None of the elements normally foun

19、d in fluorspar interferes with this test method.7. Apparatus7.1 Fluoride Ion-Selective Electrode.47.2 Magnetic Stirrer and TFE-Fluorocarbon-Coated Spin Bar.7.3 pH Meter with High ImpedanceSuitable for ion-selective electrode.7.4 Polyethylene Beakers, 100-mL.7.5 Single Junction Ag/AgCl Reference Elec

20、trode.58. Reagents and Materials8.1 Purity of ReagentsReagent-grade chemicals shall be used in all tests. Unless otherwise indicated, it is intended that allreagents conform to the specifications of the Committee on Analytical Reagents of the American Chemical Society where suchspecifications are av

21、ailable.6 Other grades may be used, provided it is first ascertained that the reagent is of sufficient high purityto permit its use without lessening the accuracy of the determination.8.2 Purity of WaterUnless otherwise indicated, references to water shall be understood to mean reagent water conform

22、ing toType I or II of Specification D1193. Type III or IV may be used if they effect no measurable change in the blank or sample.8.3 Acetic Acid Solution (1 + 10)Mix 1 volume of glacial acetic acid (CH3COOH) with 10 volumes of water.8.4 Calcium Carbonate, high purity (minimum 99.95 % CaCO3).8.5 Ethy

23、lenediaminetetraacetic Acid Disodium Salt (EDTA)-Na2C10H14O8N22H2O Solution (0.025 mol/L)Dissolve 9.3062g of EDTA in water, transfer to a 1-L volumetric flask, dilute to volume, and mix.8.6 Hydroxynaphthol Blue Indicator Grind 0.2 g of the salt with 50 g sodium chloride (NaCl).8.7 Potassium Acetate

24、BufferDilute 283 mL of glacial acetic acid (CH3COOH) to 1200 mL with water. While cooling andstirring, add KOH solution B (8.9) to adjust the pH to 5.0 (approximately 350 mL of KOH solution B are required).8.8 Potassium Hydroxide Solution ADissolve 225 g of KOH in water and dilute to 1 L with water.

25、 Store in a plastic bottle.8.9 Potassium Hydroxide Solution BDissolve 500 g of KOH in water and dilute to 1 L. Store in a plastic bottle.8.10 Sodium Fluoride SolutionDissolve 0.2210 g sodium fluoride (NaF) in water in a polyethylene beaker and dilute to 1 Lin a volumetric flask. Store in a stoppered

26、 polyethylene bottle. This solution has a concentration of 1 mL = 0.10 mg F and is stablefor six months.8.11 Triethanolamine Solution (1 + 1)Mix 50 mL of triethanolamine (NC6H15O3) with 50 mL of water.9. Hazards9.1 For precautions to be observed in this method, refer to Practices E50.10. Sampling, T

27、est Specimens, and Test Units10.1 Pulverize the test units so that 95 % passes a No. 100 mesh sieve (150-m) as directed in Test Method E276.4 Thermo Scientific Orion model 94-91 has been found suitable for this purpose.5 Thermo Scientific Orion model 90-01-00 Single Junction Reference Electrode has

28、been found suitable for this purpose.6 Reagent Chemicals, American Chemical Society Specifications, American Chemical Society, Washington, DC. For suggestions on the testing of reagents not listed bythe American Chemical Society, see the United States Pharmacopeia and National Formulary, U.S. Pharma

29、copeial Convention, Inc. (USPC), Rockville, MD.E815 17b211. Calibration and Standardization11.1 StandardizationWeigh and transfer 2.4970 g of CaCO3 (dried at 110 C for 1 h and cooled in a desiccator) to a 600-mLbeaker. Using a hood and appropriate personal protective equipment, cautiously add 75 mL

30、of HCl and warm. Cool, transfer toa 1-L volumetric flask, dilute to volume with water, and mix. This solution has a concentration of 1 mL = 1.0000 mg of calcium.11.1.1 Titration:11.1.1.1 Transfer a 50.00-mL aliquot of this solution to a 400-mL beaker, add 5 mL of triethanolamine (8.11), dilute to 20

31、0 mL,make just alkaline with KOH solution A (8.8), using a strip of litmus paper, and then add an additional 15 mL of KOH solutionA (8.8).11.1.1.2 Add 0.2 g of hydroxynaphthol blue indicator and titrate immediately with 0.025 M EDTA solution (8.5). At theequivalence point, the color changes from pin

32、k to blue. Determine the calcium equivalent of the EDTA solution as follows:1mL of EDTA solution550.0/V! 5C mg of calcium (1)where:V = milliliters of EDTA used.NOTE 1If a sample with a known CaF2 content is available, the standardization with CaCO3 can be omitted. The “standard” CaF2 sample should t

33、henbe carried through all steps of the procedure.11.2 CalibrationTransfer 10 mL of acetic acid (1 + 10) (8.3) into a series of seven 100-mL polyethylene beakers and add 20mL of potassium acetate buffer (8.7). Potential measurements in calibration standards and sample should be carried outconcurrentl

34、y. Add standard fluoride solution (8.10) and water as follows:Test Standard F mL Solution mg Water, mL1 0 0 52 0.5 0.05 4.53 1.0 0.10 4.04 2.0 0.20 3.05 3.0 0.30 2.06 4.0 0.40 1.07 5.0 0.50 0Stir the solution, immerse the electrodes (7.1 and 7.5) and wait for 3 min to 5 min for potential to reach eq

35、uilibrium. Recordthe potential in millivolts. Plot millivolts (linear scale) versus F concentration in milligrams (log scale).12. Procedure12.1 Determination of Total Calcium:12.1.1 Transfer approximately 0.50 g of the sample to a small weighing bottle, previously dried at about 105 C. Dry the bottl

36、eand contents for 1 h at 105 C to 110 C. Cap the bottle and cool to room temperature in a desiccator. Momentarily release thecap to equalize the pressure and weigh the capped bottle to the nearest 0.1 mg. Repeat the drying and weighing until there is nofurther loss of mass. Transfer the sample to a

37、400-mL beaker and reweigh the capped bottle to the nearest 0.1 mg. The differencebetween the two masses is the mass of the sample taken for analysis.12.1.2 Decomposition of SampleAdd 5 mL of HNO3, cover with a watch glass, and digest on a hot plate. Cool somewhat,add 5 mL of HClO4, and evaporate fir

38、st to fumes of HClO4. When decomposition appears to be complete, tilt the cover andevaporate carefully to complete dryness.Allow to cool, add 5 mL of HCl, dilute to approximately 50 mL with water, and heat untilall the soluble salts have dissolved. This is the main solution.NOTE 2If an insoluble res

39、idue remains, filter through a fine-textured paper, wash the paper thoroughly with hot HCl, ignite the paper and residuein a platinum crucible, treat the insoluble residue again with HNO3 and HClO4 as in sample decomposition, and combine this solution with the mainfiltrate. If the volume exceeds 90

40、mL, evaporate the volume to about 80 mL and cool.12.1.2.1 If an insoluble residue remains, filter through a fine-textured paper, wash the paper thoroughly with hot HCl, ignite thepaper and residue in a platinum crucible, treat the insoluble residue again with HNO3 and HClO4 as in sample decompositio

41、n, andcombine this solution with the main filtrate. If the volume exceeds 90 mL, evaporate the volume to about 80 mL and cool.12.1.3 Transfer the solution to a 100-mL volumetric flask, dilute to volume, and mix.12.1.4 Transfer an appropriate aliquot (20.00 mL in the range from 80 % to 100 % CaF2 and

42、 25.00 mL in the range from 40% to 80 % CaF2) to a 400-mL beaker. Add 5 mL of triethanolamine (8.11). Make the solution just alkaline with KOH solution A(8.8) and add 15 mL of additional KOH solution A (8.8). Titrate with EDTA solution as described in 11.1.1.NOTE 2As used in this test method (except

43、 as related to the term relative standard deviation), “percent” or “%” refers to mass fraction (wt/wt) ofthe form g/100g.12.2 Determination of Soluble Calcium:12.2.1 Transfer 1.00 g of sample to a 250-mL beaker. Add 20 mL of acetic acid (1 + 10) (8.3) and digest at just below boilingpoint for 60 min

44、. Cool, filter through a fine-textured filter paper, and wash five times with acetic acid (1 + 10) (8.3), collecting thefiltrate and washings into a 50-mL volumetric flask. Dilute the contents to mark with water.E815 17b312.2.2 Pipet a 25-mL aliquot into a 400-mL beaker and evaporate to dryness. Red

45、issolve the residue in 1 mL to 2 mL of HCland dilute to 200 mL with water. Add 5 mL of triethanolamine (8.11) and proceed as in total calcium determination. Record thetitration. Calculate milligrams of calcium in the 50-mL volume by multiplying the titration (in milliliters) by 2C (proceed as in11.1

46、).12.2.3 Transfer a 10-mL aliquot into a 100-mL polyethylene beaker, add 20 mL of potassium acetate buffer (8.7) and 5 mL ofwater, and mix (pH should be 5.0). Measure the potential in millivolts using reference and fluoride ion-selective electrodes asdescribed in 11.2. Obtain the milligrams of F by

47、referring to the graph in 11.2.13. Calculation13.1 Calculate total calcium as follows:Total calcium,%T 510VCab (2)where:V = volume of titrant, mL,C = calcium equivalent of EDTA solution, mg/mL,a = milliliters of aliquot,b = grams of sample used, andT = total calcium present, %.13.2 Calculate soluble

48、 calcium as follows:Soluble calcium,%S 52!V!C!25.2737!F2!10 (3)where:V = volume of titrant, mL,C = calcium equivalent of EDTA solution, mg/mL, andF = fluoride ion content, mg.13.3 Calculate calcium fluoride as follows:Calcium fluoride,%5T 2S! 31.948 (4)where:T = total calcium percent found in 13.1,

49、andS = soluble calcium percent found in 13.2.13.4 Rounding of test results obtained using this test method shall be performed in accordance with Practice E29, RoundingMethod, unless an alternative rounding method is specified by the customer or applicable material specification.14. Precision and Bias714.1 PrecisionTable 1 indicates the precision of the test method between laboratories.14.2 BiasNo information on the bias of this test method is known. Accepted reference materials may have not been includedin the materials used in the interla

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1