ImageVerifierCode 换一换
格式:PDF , 页数:4 ,大小:98.94KB ,
资源ID:534774      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-534774.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM F1375-1992(2005) Standard Test Method for Energy Dispersive X-Ray Spectrometer (EDX) Analysis of Metallic Surface Condition for Gas Distribution System Components《气体分配系统元部件用金属.pdf)为本站会员(ideacase155)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM F1375-1992(2005) Standard Test Method for Energy Dispersive X-Ray Spectrometer (EDX) Analysis of Metallic Surface Condition for Gas Distribution System Components《气体分配系统元部件用金属.pdf

1、Designation: F 1375 92 (Reapproved 2005)Standard Test Method forEnergy Dispersive X-Ray Spectrometer (EDX) Analysis ofMetallic Surface Condition for Gas Distribution SystemComponents1This standard is issued under the fixed designation F 1375; the number immediately following the designation indicate

2、s the year oforiginal adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon (e) indicates an editorial change since the last revision or reapproval.INTRODUCTIONSemiconductor clean rooms are serviced by hig

3、h-purity gas distribution systems. This test methodpresents a procedure that may be applied for the evaluation of one or more components considered foruse in such systems.1. Scope1.1 This test method establishes a procedure for comparingthe elemental composition of normal surfaces with any defectsfo

4、und on the surfaces of metal tubing, fittings, valves, or anymetal component.1.2 This test method applies to all steel surfaces of compo-nents such as tubings, connectors, regulators, and valves,regardless of size, style, or type.1.3 Limitations:1.3.1 This test method is intended for use by scanning

5、electron microscope/energy dispersive x-ray spectrometer(SEM/EDX) operators with skill level typically achieved overa twelve-month period.1.3.2 SEM used for this study should conform to thoselimitations outlined in Test Method F 1372 and should have aminimum point-to-point resolution of 30 nm.1.4 Th

6、e values stated in SI units are to be regarded as thestandard. The inch-pound units given in parentheses are forinformation only.1.5 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish

7、 appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use. Specific hazardstatements are given in Section 6.2. Referenced Documents2.1 ASTM Standards:2F 1372 Test Method for Scanning Electron Microscope(SEM) Analysis of Metallic Surface Conditi

8、on for GasDistribution System Components3. Terminology3.1 Definitions of Terms Specific to This Standard:3.1.1 normal surfacean area of the sample that does notexhibit any visible defect when viewed under the stipulatedSEM magnification. Normal surface is used to provide abaseline for comparison wit

9、h any area exhibiting a defect.3.1.2 sample anglethe angle measured normal to theincoming electron beam.3.1.3 standard conditions101.3 kPa, 0.0C (14.73 psia,32.0F).3.1.4 working distancethe measured distance from thebottom of the objective lens to the sample.4. Significance and Use4.1 The purpose of

10、 this test method is to define a procedurefor testing components being considered for installation into ahigh-purity gas distribution system. Application of this testmethod is expected to yield comparable data among compo-nents tested for purposes of qualification for this installation.5. Apparatus5

11、.1 Materials:5.1.1 Mounting Stubs, specific to the instrument used arerequired.1This test method is under the jurisdiction of ASTM Committee F01 onElectronics and is the direct responsibility of Subcommittee F01.10 on ProcessingEnvironments.Current edition approved Jan. 1, 2005. Published January 20

12、05. Originallyapproved in 1992. Last previous edition approved in 1999 as F 137592(1999).2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summ

13、ary page onthe ASTM website.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.5.1.1.1 Samples shall not be coated with a conductive thinlayer (for example, gold or carbon).5.1.2 Conductive Paste/Tape, that will provide a conductivepath

14、. Use any means of fixing the sample to a stub. Care shouldbe taken not to contaminate the area of interest.5.1.3 Adhesives, used to attach samples to sample stubs areto be vacuum stable.5.2 Instrumentation:5.2.1 Scanning Electron Microscope (SEM)Any highresolution commercially available SEM with ph

15、otographiccapabilities of a 100 cm2image may be used for theseanalyses.5.2.2 Instrument Operating Parameters, shall be as follows:accelerating voltage, 20 KeV; final aperture size nominal 200m or less; and working distance and sample tilt, as appropriateto the EDX detector.5.2.2.1 SEM instrument ope

16、rating parameters shall be suchthat collection efficiency for the EDX spectrometer is opti-mized.5.2.3 EDX Spectrometer, capable of full width half maxi-mum (FWHM) resolution of 170 eV or less (for MnKa), andcapable of detecting all elements with an atomic numbergreater than or equal to that of sodi

17、um (Na).5.2.4 Printer or Plotter, capable of accurate spectral repro-duction (linear-linear) is required.6. Hazards6.1 Observe all normal and acceptable precautions regard-ing use of high voltage, X-ray producing equipment. Observestandard and routine cryogenic handling procedures.6.2 Use adhesives

18、in such a manner that they do notcontaminate the area of interest.7. Sampling, Test Specimens, and Test Units7.1 Sample Cutting and Mounting:7.1.1 Use any mechanical cutting method that minimizesalteration of the surface. A dry, clean hacksaw is preferred.7.1.2 After cutting, clean samples with a re

19、agent gradesolvent and rinse with a reagent grade isopropyl alcohol (IPA).Place prepared samples in a resealable non-outgassing con-tainer under nitrogen.7.1.3 Mount the samples on the instrument stub.7.2 Conduct sample preparation to ensure that the tempera-ture of the sample does not exceed 90C (1

20、94F).7.3 Mount the samples onto SEM compatible mounts in amanner to avoid contamination of the surface to be analyzed.Non-X-ray generating substrates, such as graphite, are pre-ferred as mounting stubs.8. Calibration8.1 Calibrate and maintain instruments using standard labo-ratory practices and manu

21、facturers recommendations. Cali-brate EDX spectrometers according to the manufacturersspecifications so that the energy calibration falls within 6 1channel.8.2 Magnification for qualitative and quantitative analysisshall result in incident beam concentration on the surfaceanomaly, minimizing stray X

22、-ray signal from the background.9. Procedure9.1 Follow sample preparation of this test method (7.1)toexpose the surface.9.2 Introduce the sample stub into the SEM vacuum cham-ber.9.3 Activate the electron beam when vacuum conditionsmeet those recommended by the manufacturer:9.4 Move the sample until

23、 an area of interest on thesamples surface comes into focus. The area of interest shouldbe representative of a normal surface, avoiding gross deformi-ties.9.5 Orient the sample (with respect to working distance,sample tilt, etc) to maximize X-ray collection efficiency of theEDX detector.9.6 Adjust a

24、ccelerating voltage to provide maximum exci-tation for the element of interest. Typically, this is 20 KeV forall elements having an atomic number greater than or equal toeleven (the atomic number of sodium) and 10 KeV for thoseelements with atomic numbers between boron and sodium.9.7 Collect X-ray s

25、ignals for a minimum of 100 s from acontrol area.9.8 Move sample to that area showing surface anomaly andacquire X-ray signals for a minimum of 100 s.9.9 Identify peaks and label the spectrum appropriately.9.10 Print or plot the spectrum (see Fig. 1).9.11 Photograph the surface anomaly at a magnific

26、ation bestsuited to document the anomalys physical characteristics.9.12 Repeat 9.5-9.11 for all areas of interest.9.13 Turn off the SEM electron beam and remove thesample from the vacuum chamber.10. Report10.1 Report the following information:10.1.1 Data AnalysisThe first sample data collection must

27、be taken from a selected site that is representative of the bestnormal surface available for the sample.10.1.2 Data Presentation:10.1.2.1 All elements not of the base metal will be consid-ered unusual and shall be listed in tabular form with thenumber of particles demonstrating the presence of those

28、elements being recorded.10.1.2.2 Data shall be presented in the form of linear-linearprinted or plotted spectra (see Fig. 1). The plotted spectral scaleshall be such that the smallest peak can easily be discerned. Ifpeak height differences are such that adequate representation ofall peaks cannot be

29、made from the same plot, two spectral plotsshall be made using different scale factors.10.1.2.3 The EDX spectra and corresponding photographsshould be appropriately labeled so that the elemental compo-sition of any specific defect, particle, or anomaly is readilyapparent to any third party.10.1.2.4

30、EDX spectra and related photomicrographs mustinclude the following information: sample identification, date,peak identification, tilt angle, and voltage.10.1.3 All data reported must identify the SEM and EDXequipment manufacturer and model number.F 1375 92 (2005)2FIG. 1 Relative Abundance of Element

31、s of an InclusionF 1375 92 (2005)310.1.4 Any special modifications in equipment or procedurenecessary to acquire data must be documented and fullydescribed.11. Precision and Bias11.1 Precision and bias for this test method are beingdetermined.12. Keywords12.1 components; connectors; contamination; E

32、DX; gasdistribution components; SEM/EDX; semiconductor process-ing; surface condition; tubingASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentionedin this standard. Users of this standard are expressly advised that determinati

33、on of the validity of any such patent rights, and the riskof infringement of such rights, are entirely their own responsibility.This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years andif not revised, either reapproved or withdr

34、awn. Your comments are invited either for revision of this standard or for additional standardsand should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of theresponsible technical committee, which you may attend. If you feel that your

35、comments have not received a fair hearing you shouldmake your views known to the ASTM Committee on Standards, at the address shown below.This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959,United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the aboveaddress or at 610-832-9585 (phone), 610-832-9555 (fax), or serviceastm.org (e-mail); or through the ASTM website(www.astm.org).F 1375 92 (2005)4

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1