ImageVerifierCode 换一换
格式:PDF , 页数:22 ,大小:475.73KB ,
资源ID:535486      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-535486.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM F1717-2012a Standard Test Methods for Spinal Implant Constructs in a Vertebrectomy Model《脊柱植入物结构在脊柱切除术模型上的标准试验方法》.pdf)为本站会员(eveningprove235)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM F1717-2012a Standard Test Methods for Spinal Implant Constructs in a Vertebrectomy Model《脊柱植入物结构在脊柱切除术模型上的标准试验方法》.pdf

1、Designation: F1717 12aStandard Test Methods forSpinal Implant Constructs in a Vertebrectomy Model1This standard is issued under the fixed designation F1717; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision.

2、 A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 These test methods cover the materials and methods forthe static and fatigue testing of spinal implant assemblies in avertebrectomy

3、model.The test materials for most combinationsof spinal implant components can be specific, depending on theintended spinal location and intended method of application tothe spine.1.2 These test methods are intended to provide a basis forthe mechanical comparison among past, present, and futurespina

4、l implant assemblies. They allow comparison of spinalimplant constructs with different intended spinal locations andmethods of application to the spine. These test methods are notintended to define levels of performance, since sufficientknowledge is not available to predict the consequences of theus

5、e of a particular device.1.3 These test methods set out guidelines for load types andmethods of applying loads. Methods for three static load typesand one fatigue test are defined for the comparative evaluationof spinal implant assemblies.1.4 These test methods establish guidelines for measuringdisp

6、lacements, determining the yield load, and evaluating thestiffness and strength of the spinal implant assembly.1.5 Some spinal constructs may not be testable in all testconfigurations.1.6 The values stated in SI units are to be regarded asstandard. No other units of measurement are included in thiss

7、tandard.1.7 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Refe

8、renced Documents2.1 ASTM Standards:2D638 Test Method for Tensile Properties of PlasticsE4 Practices for Force Verification of Testing MachinesE6 Terminology Relating to Methods of Mechanical TestingE177 Practice for Use of the Terms Precision and Bias inASTM Test MethodsE691 Practice for Conducting

9、an Interlaboratory Study toDetermine the Precision of a Test MethodE739 Practice for StatisticalAnalysis of Linear or LinearizedStress-Life (S-N) and Strain-Life (-N) Fatigue DataE1150 Definitions of Terms Relating to Fatigue (Withdrawn1996)3F1582 Terminology Relating to Spinal ImplantsF2077 Test Me

10、thods For Intervertebral Body Fusion Devices3. Terminology3.1 Definitions:3.1.1 For definitions of terms relating to these test methods,see Terminology E6, Terminology F1582, and DefinitionsE1150.3.2 Definitions of Terms Specific to This Standard:3.2.1 active length of the longitudinal elementthe st

11、raightline distance between the center of attachment of the superioranchor and the center of attachment of the inferior anchor.3.2.2 angular displacement at 2 % offset yield (degrees)the angular displacement of a construct measured via theactuator that produces a permanent angular displacement in th

12、eX-Y plane equal to 0.020 times the torsional aspect ratio (seePoint A in Fig. 1).3.2.3 block moment armthe perpendicular to the appliedload between the insertion point of an anchor and the axis ofthe hinge pin.3.2.4 compressive or tensile bending stiffness (N/mm)thecompressive or tensile bending yi

13、eld force divided by elasticdisplacement (see the initial slope of line BC in Fig. 1).1These test methods are under the jurisdiction of ASTM Committee F04 onMedical and Surgical Materials and Devices and are the direct responsibility ofSubcommittee F04.25 on Spinal Devices.Current edition approved D

14、ec. 1, 2012. Published January 2013. Originallyapproved in 1996. Last previous edition approved in 2012 as F1717 12. DOI:10.1520/F1717-12A.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume

15、 information, refer to the standards Document Summary page onthe ASTM website.3The last approved version of this historical standard is referenced onwww.astm.org.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States13.2.5 compressive or ten

16、sile bending ultimate load (N)themaximum compressive or tensile force in the X-Z plane appliedto a spinal implant assembly (see the force at Point E in Fig. 1).The ultimate load should be a function of the device and not ofthe load cell or testing machine.3.2.6 compressive or tensile bending yield l

17、oad (N)thecompressive or tensile bending force in the X-Z plane neces-sary to produce a permanent deformation equal to 0.020 timesthe active length of the longitudinal element (see the force atPoint D in Fig. 1).3.2.7 coordinate system/axesthree orthogonal axes aredefined in Fig. 2 and Fig. 3. The a

18、nterior-posterior axis is Xwith positive being anterior. The medial-lateral axis is Y withleft being positive when viewed posteriorly. The superior-inferior axis is Z with superior being positive.3.2.8 displacement at 2 % offset yield (mm)the displace-ment of a construct measured via the actuator th

19、at produces apermanent deformation equal to 0.020 times the active lengthof the longitudinal element (see Point A in Fig. 1).3.2.9 elastic angular displacement (degrees)the angulardisplacement at 2 % offset yield (see Point A in Fig. 1) minusthe 2 % offset angular displacement (see Point B in Fig. 1

20、).(The distance between Point A and Point B in Fig. 1.)3.2.10 elastic displacement (mm)the displacement at 2 %offset yield (see Point A in Fig. 1) minus the 2 % offsetdisplacement (see Point B in Fig. 1). (The distance betweenPoint A and Point B in Fig. 1.)3.2.11 failurepermanent deformation resulti

21、ng fromfracture, plastic deformation, or loosening beyond the ultimatedisplacement or loosening that renders the spinal implantassembly ineffective or unable to adequately resist load.3.2.12 fatigue lifethe number of loading cycles, N,ofaspecified character that the spinal implant assembly sustainsb

22、efore failure of a specified nature occurs (see DefinitionsE1150).3.2.13 insertion point of an anchorthe location where theanchor is attached to the test block. The insertion points shownin Figs. 2-15 are to be adhered to if possible. In situationswhere the design of the spinal implant assembly or t

23、hemanufacturers surgical instructions for installation dictateotherwise, the attachment points may deviate from thesedimensions.3.2.14 intended method of applicationspinal implant as-semblies contain different types of anchors. Each type ofanchor has an intended method of application to the spine.3.

24、2.15 intended spinal locationthe anatomic region of thespine intended for the application of the spinal implantassembly. Spinal implant assemblies are developed for specificspinal locations such as the anterior cervical spine or theposterior thoracolumbar, lumbar, and lumbosacral spine.3.2.16 hinge

25、pinthe cylindrical rod connecting a test blockto a side support.Acervical construct is secured with a 9.6 mmdiameter pin and the thoracolumbar, lumbar, and lumbosacralconstruct uses a 12.7 mm diameter pin.3.2.17 longitudinal directionthe initial spatial orientationparallel to the longitudinal elemen

26、t of the spinal implantassembly. The longitudinal direction is generally in thesuperior-inferior direction and, therefore, generally parallel tothe z axis.3.2.18 maximum run-out loadthe maximum load that canbe applied to a spinal implant assembly where all of the testedconstructs have withstood 5 00

27、0 000 cycles without a failure.3.2.19 permanent deformationthe displacement (mm) orangular displacement (degree) of the spinal implant constructrelative to the initial unloaded condition as measured via theactuator after the applied load, moment, or torque has beenremoved.3.2.20 spinal implant assem

28、blya complete spinal implantconfiguration as intended for surgical use. A spinal implantassembly will contain anchors, interconnections, and longitu-dinal elements and may contain transverse elements (see Fig. 4,Fig. 6, Fig. 8, Fig. 10, Fig. 12, and Fig. 14).3.2.21 spinal implant constructa complete

29、 spinal implantassembly attached to the appropriate test blocks.3.2.22 test blockthe component of the test apparatus formounting the spinal implant assembly.Aspecific design of testblock is required for each intended spinal location and intendedmethod of application. Fig. 5, Fig. 7, Fig. 9, Fig. 11,

30、 Fig. 13,and Fig. 15 describe the recommended designs for the testFIG. 1 Typical Load Displacement Curve or Torque AngulationCurveF1717 12a2blocks; however, alternate designs can be used as long asequivalent performance is demonstrated.3.2.23 test block load pointthe location on the test blockat whi

31、ch the resultant load is transmitted from the testapparatus.3.2.24 tightening torquethe specified torque that is ap-plied to the various threaded fasteners of the spinal implantassembly.3.2.25 torsional aspect ratiothe active length of the lon-gitudinal element divided by the distance from the cente

32、r ofrotation to the insertion point of an anchor (for example: in Fig.2 1.70 for a 76-mm active length, X =40mmandY = 40/2mm).A 5LD5Lx21y2!1/2(1)where:A = torsional aspect ratio,L = active length of longitudinal element,D = distance to insertion point,x = x distance to insertion point, andy = y dist

33、ance to insertion point.3.2.26 torsional stiffness (N-m/degree)the yield torque(N-m) divided by elastic angular displacement (degrees) (theinitial slope of line BC in Fig. 1).FIG. 2 A Standard Bilateral Construct Containing Screw, Rod and ScrewF1717 12a33.2.27 torsional ultimate load (N-m)the maximu

34、m torquein the X-Y plane applied to a spinal implant assembly (thetorque at Point E in Fig. 1). The ultimate torque should be afunction of the device and not of the load cell or testingmachine.3.2.28 two percent (2 %) offset angular displacement(degrees)a permanent angular displacement in the X-Y pl

35、anemeasured via the actuator equal to 0.020 times the torsionalaspect ratio (for example: 1.95 for 1.70 0.02 180/pi) (seePoint B in Fig. 1).3.2.29 two percent (2 %) offset displacement (mm)a per-manent deformation measured via the actuator equal to 0.020times the active length of the longitudinal el

36、ement (for ex-ample: 1.52 mm for a 76 mm active length of the longitudinalelement or 0.70 mm for 35 mm) (see Point B in Fig. 1).3.2.30 ultimate displacement (mm)the displacement asso-ciated with the ultimate load, ultimate bending load or ultimatetorque (the displacement at Point F in Fig. 1).3.2.31

37、 yield torque (N-m)the torque in the X-Y planerequired to produce a permanent displacement of 0.020 timesthe torsional aspect ratio (the torque at Point D in Fig. 1).3.2.32 zero displacement intercept (mm)the intersectionof the straight line section of the load displacement curve andthe zero load ax

38、is (the zero displacement reference Point 0 inFig. 1).FIG. 3 A Bilateral Hook, Rod, Screw, and Transverse Element ConstructF1717 12a44. Summary of Test Methods4.1 Similar test methods are proposed for the mechanicalevaluation of cervical spinal implant assemblies (see Fig. 4,Fig. 6, and Fig. 8) and

39、thoracolumbar, lumbar, and lumbosacralspinal implant assemblies (see Fig. 10, Fig. 12, and Fig. 14).4.2 Testing of the spinal implant assemblies will simulate avertebrectomy model via a large gap between two Ultra HighMolecular Weight Polyethylene (UHMWPE) test blocks. TheUHMWPE used to manufacture

40、the test blocks should have atensile breaking strength equal to 40 6 3 MPa (see Specifica-tion D638). The UHMWPE test blocks (see Fig. 5, Fig. 7, Fig.9, Fig. 11, Fig. 13, and Fig. 15) will eliminate the effects of thevariability of bone properties and morphometry. Alternatedesigns of test blocks may

41、 be used as long as equivalentperformance is demonstrated.4.3 Three static mechanical tests and one dynamic test willevaluate the spinal implant assemblies. The three static me-chanical tests are compression bending, tensile bending, andtorsion.The dynamic test is a compression bending fatigue test.

42、It is the responsibility of the user of this standard to determinewhich test(s) is (are) most appropriate for a particular spinalimplant assembly.4.4 A specific clinical indication generally requires a spe-cific spinal implant assembly. Spinal implant assemblies willbe evaluated with test configurat

43、ions which simulate theclinical requirements for the intended spinal location. Theintended spinal locations are both anterior (see Fig. 4) andposterior (see Fig. 6 and Fig. 8) surfaces of the cervical spineor both anterior (see Fig. 10) and posterior (see Fig. 12 and Fig.14) surfaces of the thoracol

44、umbar, lumbar, and lumbosacralspine. The block moment arm (see 6.6) for a test configurationdepends on the intended spinal location. The cervical spineconfiguration (see Fig. 5, Fig. 7, and Fig. 9) specifies one blockmoment arm, while a larger block moment arm (see Fig. 11,Fig. 13, and Fig. 15) is s

45、pecified for the thoracolumbar, lumbar,and lumbosacral spine.4.5 The intended method of application of the spinal im-plant assembly may vary for specific anatomic regions andclinical indications. Spinal implant assemblies contain differenttypes of anchors. Each type of anchor has an intended methodo

46、f application to the spine. For example, one assembly mayinclude anterior vertebral body screws and rods (see Fig. 2),while another assembly may contain posterior sacral screws,hooks, rods, and transverse elements (see Fig. 3). The blockFIG. 4 Cervical Unilateral Construct Test Setup for Screws or B

47、oltsF1717 12a5moment arm of a test configuration will be independent of theintended method of application of a spinal implant assembly;therefore, the test data for different intended methods ofapplication may be compared.5. Significance and Use5.1 Spinal implants are generally composed of severalcom

48、ponents which, when connected together, form a spinalimplant assembly. Spinal implant assemblies are designed toprovide some stability to the spine while arthrodesis takesplace. These test methods outline standard materials andmethods for the evaluation of different spinal implant assem-blies so tha

49、t comparison between different designs may befacilitated.5.2 These test methods are used to quantify the static anddynamic mechanical characteristics of different designs ofspinal implant assemblies. The mechanical tests are conductedin vitro using simplified load schemes and do not attempt tomimic the complex loads of the spine.5.3 The loads applied to the spinal implant assemblies invivo will, in general, differ from the loading configurationsused in these test methods. The results obtained here cannot beused directly to predict in vi

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1