ImageVerifierCode 换一换
格式:PDF , 页数:9 ,大小:153.19KB ,
资源ID:536514      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-536514.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM F2083-2011 Standard Specification for Total Knee Prosthesis《全膝假体标准规范》.pdf)为本站会员(outsidejudge265)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM F2083-2011 Standard Specification for Total Knee Prosthesis《全膝假体标准规范》.pdf

1、Designation: F2083 11Standard Specification forTotal Knee Prosthesis1This standard is issued under the fixed designation F2083; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision. A number in parentheses indi

2、cates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This specification covers total knee replacement (TKR)prostheses used to provide functioning articulation by employ-ing femoral and tibial components, allowing a

3、 minimum of110 of flexion to high flexion. Although a patellar componentmay be considered an integral part of a TKR, the detaileddescription of this component is excluded here since it isprovided in Specification F1672.1.2 Included within the scope of this specification arereplaceable components of

4、modular designs, for example, tibialarticulating surfaces and all components labeled for, or capableof, being used with cement, regardless of whether the samecomponents can also be used without cement. This includesprimary and revision prostheses and also covers fixed andmobile bearing knee designs.

5、1.3 This specification is intended to provide basic descrip-tions of material and prosthesis geometry. Additionally, thosecharacteristics determined to be important to in vivo perfor-mance of the prosthesis are defined. However, compliance withthis specification does not itself define a device that

6、willprovide adequate clinical performance.1.4 Excluded from the scope are hemiarthroplasty devicesthat replace only the femoral or tibial surface, but not both;unicompartmental designs, which replace the articulating sur-faces of only one condyle; and patellofemoral prostheses. Alsoexcluded are devi

7、ces designed for custom applications.1.5 The values stated in SI units are to be regarded asstandard. No other units of measurement are included in thisstandard.2. Referenced Documents2.1 ASTM Standards:2F67 Specification for Unalloyed Titanium, for SurgicalImplant Applications (UNS R50250, UNS R504

8、00, UNSR50550, UNS R50700)F75 Specification for Cobalt-28 Chromium-6 MolybdenumAlloy Castings and Casting Alloy for Surgical Implants(UNS R30075)F86 Practice for Surface Preparation and Marking of Me-tallic Surgical ImplantsF90 Specification for Wrought Cobalt-20Chromium-15Tungsten-10Nickel Alloy fo

9、r Surgical Implant Applica-tions (UNS R30605)F136 Specification for Wrought Titanium-6Aluminum-4Vanadium ELI (Extra Low Interstitial) Alloy for SurgicalImplant Applications (UNS R56401)F138 Specification for Wrought 18Chromium-14Nickel-2.5Molybdenum Stainless Steel Bar and Wire for SurgicalImplants

10、(UNS S31673)F451 Specification for Acrylic Bone CementF562 Specification for Wrought 35Cobalt-35Nickel-20Chromium-10Molybdenum Alloy for Surgical ImplantApplications (UNS R30035)F563 Specification for Wrought Cobalt-20Nickel-20Chromium-3.5Molybdenum-3.5Tungsten-5Iron Alloyfor Surgical Implant Applic

11、ations (UNS R30563)3F648 Specification for Ultra-High-Molecular-Weight Poly-ethylene Powder and Fabricated Form for Surgical Im-plantsF732 Test Method for Wear Testing of Polymeric MaterialsUsed in Total Joint ProsthesesF745 Specification for 18Chromium-12.5Nickel-2.5Molybdenum Stainless Steel for C

12、ast and Solution-Annealed Surgical Implant ApplicationsF746 Test Method for Pitting or Crevice Corrosion ofMetallic Surgical Implant MaterialsF748 Practice for Selecting Generic Biological Test Meth-ods for Materials and DevicesF799 Specification for Cobalt-28Chromium-6MolybdenumAlloy Forgings for S

13、urgical Implants (UNS R31537,R31538, R31539)F981 Practice for Assessment of Compatibility of Biomate-rials for Surgical Implants with Respect to Effect ofMaterials on Muscle and BoneF983 Practice for Permanent Marking of Orthopaedic Im-plant Components1This specification is under the jurisdiction of

14、 ASTM Committee F04 onMedical and Surgical Materials and Devices and is the direct responsibility ofSubcommittee F04.22 on Arthroplasty.Current edition approved Dec. 1, 2011. Published December 2011. Originallyapproved in 2001. Last previous edition approved in 2010 as F2083 10. DOI:10.1520/F2083-11

15、.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3Withdrawn. The last approved version of this historical sta

16、ndard is referencedon www.astm.org.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.F1044 Test Method for Shear Testing of Calcium PhosphateCoatings and Metallic CoatingsF1108 Specification for Titanium-6Aluminum-4VanadiumAlloy Castin

17、gs for Surgical Implants (UNS R56406)F1147 Test Method for Tension Testing of Calcium Phos-phate and Metallic CoatingsF1160 Test Method for Shear and Bending Fatigue Testingof Calcium Phosphate and Metallic Medical and Compos-ite Calcium Phosphate/Metallic CoatingsF1223 Test Method for Determination

18、 of Total Knee Re-placement ConstraintF1377 Specification for Cobalt-28Chromium-6Molybdenum Powder for Coating of Orthopedic Implants(UNS R30075)F1472 Specification for Wrought Titanium-6Aluminum-4Vanadium Alloy for Surgical Implant Applications (UNSR56400)F1537 Specification for Wrought Cobalt-28Ch

19、romium-6MolybdenumAlloys for Surgical Implants (UNS R31537,UNS R31538, and UNS R31539)F1580 Specification for Titanium and Titanium-6Aluminum-4 Vanadium Alloy Powders for Coatings ofSurgical ImplantsF1672 Specification for Resurfacing Patellar ProsthesisF1800 Test Method for Cyclic Fatigue Testing o

20、f MetalTibial Tray Components of Total Knee Joint ReplacementsF1814 Guide for Evaluating Modular Hip and Knee JointComponentsF2384 Specification for Wrought Zirconium-2.5NiobiumAlloy for Surgical Implant Applications (UNS R60901)2.2 ISO Standards:4ISO 64741 Implants for SurgeryCeramic MaterialsPart

21、1: Ceramic Materials Based on High Purity AluminaISO 10993 Biological Evaluation of Medical DevicesISO 142431 Implants for SurgeryWear of Total Knee-Joint ProsthesesPart 1: Loading and Displacement Pa-rameters for Wear-Testing Machines with Load Controland Corresponding Environmental Conditions for

22、TestISO 142432 Implants for SurgeryWear of Total Knee-Joint ProsthesesPart 2: Methods of MeasurementISO 142433 Implants for SurgeryWear of Total Knee-Joint ProsthesesPart 3: Loading and Displacement Pa-rameters for Wear-Testing Machines with DisplacementControl and Corresponding Environmental Condit

23、ions forTest2.3 FDA Document:US FDA 21 CFR 888.6 Degree of Constraint52.4 ANSI/ASME Standard:ANSI/ASME B46.1 Surface Texture (Surface Roughness,Waviness, and Lay)43. Terminology3.1 Definitions of Terms Specific to This Standard:3.1.1 constraint, nthe relative inability of a TKR to befurther displace

24、d in a specific direction under a given set ofloading conditions as dictated by the TKRs geometric design.3.1.2 extension, nmotion of the tibia toward bringing itinto axial alignment with the femur.3.1.3 femoral component, nbearing member fixed to thefemur for articulation with the tibial component

25、and thepatellar component or natural patella.3.1.4 flexion, nmotion of the tibia toward bringing it intocontact with the posterior femoral surface.3.1.5 high flexion, na total knee prosthesis designed tofunction at flexion angles above 125.3.1.6 interlock, nthe mechanical design feature used toincre

26、ase capture of one component within another and torestrict unwanted displacement between components, (that is, acomponent locking mechanism for modular components).3.1.7 patella component, nbearing member fixed to thenatural patella for articulation with the femoral component,which is described in S

27、pecification F1672.3.1.8 radiographic marker, na nonstructural, generallythin wire, designed to be apparent on X-rays taken afterimplantation for those components that would otherwise benonapparent on such X-rays.3.1.9 tibial component, nbearing member fixed to thetibia for articulation with the fem

28、oral component, typicallyeither monoblock UHMWPE or consisting of two majorcomponents, a metallic tibial tray and a UHMWPE bearingsurface.3.1.10 total knee replacement (TKR), nprosthetic partsthat substitute for the natural opposing tibial, patellar, andfemoral articulating surfaces.4. Classificatio

29、n4.1 The following classification by degree of constraint issuggested, based on the concepts adopted by the U.S. Food andDrug Administration (see 2.3).4.1.1 ConstrainedA constrained joint prosthesis preventsdislocation of the prosthesis in more than one anatomic planeand consists of either a single,

30、 flexible, across-the-joint com-ponent or more than one component linked together or affined.4.1.2 Semi-constrainedA semi-constrained joint prosthe-sis limits translation or rotation, or both, of the prosthesis inone or more planes via the geometry of its articulating surfaces.It has no across-the-j

31、oint linkages.4.1.3 Non-constrainedA non-constrained joint prosthesisminimally restricts prosthesis movement in one or more planes.Its components have no across-the-joint linkages.5. Material5.1 The choice of materials is understood to be a necessarybut not sufficient assurance of function of the de

32、vice madefrom them.All devices conforming to this specification shall befabricated from materials with adequate mechanical strengthand durability, corrosion resistance, and biocompatibility.5.1.1 Mechanical StrengthVarious components of totalknee replacement devices have been successfully fabricated

33、from the following materials. See Specifications F75, F90,F136, F138, F562, F563, F745, F799, F1108, F1377, F1472,F1537, F1580, F2384, and ISO 64741. Polymeric bearing4Available from American National Standards Institute (ANSI), 25 W. 43rd St.,4th Floor, New York, NY 10036, http:/www.ansi.org.5Avail

34、able from Food and Drug Administration (FDA), 5600 Fishers Ln.,Rockville, MD 20857, http:/www.fda.gov.F2083 112components have been fabricated from UHMWPE as specifiedin Specification F648. Porous coatings have been fabricatedfrom the materials specified in Specifications F67 and F75. Notall of thes

35、e materials may possess sufficient mechanicalstrength for critical highly stressed components nor for articu-lating surfaces.5.1.2 Corrosion ResistanceMaterials with limited or nohistory of successful use for orthopaedic implant applicationsshall be determined to exhibit corrosion resistance equal t

36、o orbetter than one of the materials listed in 5.1.1 when tested inaccordance to Test Method F746. If the corrosion resistance ofa material is less than one of the materials listed in 5.1.1 whentested in accordance with Test Method F746, its use wouldneed to be justified.5.1.3 BiocompatibilityMateri

37、als with limited or no his-tory of successful use for orthopaedic implant applicationsshall be determined to exhibit acceptable biological responseequal to or better than one of the materials listed in 5.1.1 whentested in accordance with Practices F748, F981,orISO 10993for a given application. If th

38、e material is not one of thematerials listed in 5.1.1, then its biocompatibility must beverified in accordance with Practices F748, F981,orISO 10993.6. Performance Requirements6.1 Although the testing methodologies described in thisspecification attempt to identify physiologically relevant testcondi

39、tions, the interpretation of results is limited to an in vitrocomparison between knee designs under the stated test condi-tions.6.2 Component FunctionEach component for total kneearthroplasty is expected to function as intended when manu-factured in accordance with good manufacturing practices andto

40、 the requirements of this specification. The components shallbe capable of withstanding static and dynamic physiologicloads for the intended use and environment without compro-mise to their function. All components used for experimentalmeasures of performance shall be equivalent to the finishedprodu

41、ct in form and material. Components shall be sterilized ifit will affect their performance.NOTE 1Computer models may be used to evaluate many of thefunctional characteristics if appropriate material properties and functionalconstraints are included and the computer models have been validatedwith exp

42、erimental tests.6.2.1 Individual tibial and femoral components may befatigue tested using relevant test methods under appropriateloading conditions to address loss of supporting foundation.6.2.1.1 Tibial tray components shall be evaluated in accor-dance with Test Method F1800. Each of five specimens

43、 shall betested with a maximum load of 900 N (1)6for 10 million cycleswith no failures. All tibial components designated by thisspecification shall pass this minimum requirement.6.2.2 Contact area and contact pressure distributions may bedetermined at various flexion angles using one of severalpubli

44、shed methods (2-7) to provide a representation of stressesapplied to the bearing surfaces and to the components. Flexionangles of 0, 15, 30, 60, and 90 are recommended. If theprosthesis is designed to function at higher flexion angles, thenthese measurements should also be made at the maximumflexion

45、 angle as determined in 6.2.3. At 90 of flexion and themaximum flexion angle, these measurements should be madeat 0 of rotation and 15 of internal and external rotation. If aninternal or external rotational angle of less than 15 is used, itmust be justified. On mobile bearing systems, contact area a

46、ndcontact pressure measurements should be made at all articu-lating surfaces. On mobile bearing systems, to make thesemeasurements at 15 of internal and external rotation, thefemoral component is rotated relative to the tibial base com-ponent and the mobile portion of the articulating component isal

47、lowed to come to a static position under load beforemeasurements are taken. If these tests are performed, it isimportant to maintain consistent test parameters and to evalu-ate other TKR prostheses under the same conditions.6.2.3 Range of motion in extension shall be greater than orequal to 0, flexi

48、on shall be greater than or equal to 110. Thesemeasurements apply to components mounted in neutral align-ment in bone or in an anatomically representative substitute. Itis critical to define the location of the neutral alignmentposition, for example, the center of contact areas or patches, interms o

49、f dimensions from the outside edges of the components.The initial positioning or location of the neutral alignmentpoint will alter the range of motion values for certain TKRprostheses.NOTE 2The range of motion of a total knee replacement can bedetermined using the CAD drawings of an implant. The researcher shouldreport how 0 of flexion was defined. Maximum flexion may be defined asthe highest angle at which the following conditions are met: (a) bonyimpingement is not expected; (b) one or both posterior femoral condylesdo not dig (that is

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1