ImageVerifierCode 换一换
格式:PDF , 页数:11 ,大小:147.92KB ,
资源ID:539038      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-539038.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM F2588-2012 Standard Test Method for Man-In-Simulant Test (MIST) for Protective Ensembles《防护服载人模拟试验 (MIST) 的标准试验方法》.pdf)为本站会员(cleanass300)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM F2588-2012 Standard Test Method for Man-In-Simulant Test (MIST) for Protective Ensembles《防护服载人模拟试验 (MIST) 的标准试验方法》.pdf

1、Designation: F2588 12Standard Test Method forMan-In-Simulant Test (MIST) for Protective Ensembles1This standard is issued under the fixed designation F2588; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year of last revision.

2、 A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method specifies the test equipment andprocedures for conducting tests to estimate the entry ofchemical agent vapor simula

3、nt through protective ensembleswhile worn by test subjects.1.2 This test method permits the evaluation of protectiveensembles consisting of protective garments or suits, gloves,footwear, respirators, and interface devices.1.3 The results of this test method yield local physiologicalprotective dosage

4、 factors at individual locations of the humanbody as well as a systemic physiological protective dosagefactor for the entire ensemble.1.4 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to esta

5、blish appro-priate safety and health practices and to determine theapplicability of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2E171 Practice for Conditioning and Testing Flexible BarrierPackagingF1052 Test Method for Pressure Testing Vapor ProtectiveSuitsF1154 Pra

6、ctices for Qualitatively Evaluating the Comfort,Fit, Function, and Durability of Protective Ensembles andEnsemble ComponentsF1359 Test Method for Liquid Penetration Resistance ofProtective Clothing or Protective Ensembles Under aShower Spray While on a MannequinF1494 Terminology Relating to Protecti

7、ve ClothingF1731 Practice for Body Measurements and Sizing of Fireand Rescue Services Uniforms and Other Thermal HazardProtective Clothing2.2 National Fire Protection Association (NFPA) Stan-dards:3NFPA 1971 Standard on Protective Ensembles for Struc-tural and Proximity Fire FightingNFPA 1994 Standa

8、rd on Protective Ensembles for CBRNTerrorism Incidents2.3 U.S. Military Publication:Test Operations Procedure (TOP 10-2-022) Man-In-Simu-lant Test (MIST)Chemical Vapor Testing of Chemical/Biological Protective Suits, September 2001.43. Terminology3.1 Definitions:3.1.1 chemical agent vapor simulant,

9、na substance usedto replicate vapor characteristics of a chemical agent which isa more toxic substance.3.1.1.1 DiscussionIn this test method, methyl salicylate isused as a chemical agent vapor simulant for the blister agent,distilled mustard.3.1.2 chemical terrorism agent, na liquid, solid, gaseous,

10、or vapor chemical warfare agent or a toxic industrial chemicalused to inflict lethal or incapacitating casualties, generally on acivilian population as a result of a terrorist attack.3.1.3 interface area, na location on the body where two ormore protective clothing items (for example, suits, garment

11、s,hoods, gloves, footwear, respirators, or other items) come intocontact.3.1.3.1 DiscussionInterfaces are potential breaches thatcould allow entry of chemicals into the interior of the protec-tive ensemble.3.1.4 interface device, nan item of the ensemble that isintended to provide protection to the

12、interface area.3.1.5 local physiological protective dosage factor (PPDFi),na physiological protective dosage factor at a specificlocation on the body.3.1.5.1 DiscussionIn this test method, local physiologicalprotective dosage factors are measured at 30 different locationson the body.1This test metho

13、d is under the jurisdiction ofASTM Committee F23 on PersonalProtective Clothing and Equipment and is the direct responsibility of SubcommitteeF23.30 on Chemicals.Current edition approved June 1, 2012. Published June 2012. Originallyapproved in 2006. Last previous edition approved in 2007 as F2588 -

14、07. DOI:10.1520/F2588-12.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM website.3Available from National Fire Protec

15、tion Association (NFPA), 1 BatterymarchPark, Quincy, MA 02169-7471, http:/www.nfpa.org.4U.S. Army Developmental Test Command (DTC), ATTN: CSTE-DTC-TT-S,Aberdeen Proving Ground, MD 21005-5055.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United S

16、tates.3.1.6 onset of symptoms exposure dosage (OSED), nthedosage that causes threshold effects to the average human.3.1.7 passive adsorbent dosimeters (PADs), ntwo-sidedpackets with one side made from a permeable film and thesecond side made from a chemically-impermeable film, whichare filled with a

17、bsorbent material, and are placed on the skin atspecific locations of the body, to collect any chemical vaporchallenge that has infiltrated the protective ensemble.3.1.8 physiological protective dosage factor (PPDF),nthe factor by which protection is improved against effectsfrom vapor exposure for t

18、he protected individual comparedwith whole body exposure of the unprotected individual.3.1.9 protective ensemble, nthe combination of protectiveclothing with respiratory protective equipment, hoods, helmets,gloves, boots, communication systems, cooling devices, andother accessories intended to prote

19、ct the wearer from apotential hazard when worn together.3.1.9.1 DiscussionFor evaluating the vapor penetrationand permeation resistance of protective ensembles againstchemical agent vapor simulant, the protective ensemble in-cludes all those clothing items or accessories, which arenecessary to provi

20、de resistance to inward leakage by chemicalvapors.3.1.10 systemic physiological protective dosage factor(PPDFsys), na physiological protective dosage factor deter-mined for the entire ensemble.3.2 For definitions of other terms related to protectiveclothing used in this test method, refer to Termino

21、logy F1494.4. Summary of Test Method4.1 This test method establishes procedures for testingcomplete protective ensembles worn by test subjects whenexposed to chemical agent vapor simulant. Methyl salicylate(MeS) is used to simulate chemical agent vapor penetrationthrough ensemble interfaces and open

22、ings.4.2 This test method tests the vapor penetration and perme-ation resistance of a protective ensemble by the placement ofpassive adsorbent dosimeters (PADs) containing sorbent ma-terial onto the test subjects at specific locations on the body.4.3 After test subjects wearing the ensemble to be ev

23、aluatedfinish a series of activities inside the test chamber, these PADsare removed from the test subject and analyzed for MeS.4.4 Data obtained from the individual PADs are used toassess the vapor penetration and permeation resistance of theensemble at each body location and for the overall ensembl

24、e.5. Significance and Use5.1 This test method is intended to evaluate the penetrationand permeation resistance for complete ensembles to vaporsfrom chemical warfare agents and other chemical substances.5.1.1 This test method differs from Test Method F1052 byproviding an evaluation of ensembles worn

25、on human testsubjects and measuring the inward leakage of a chemical agentvapor simulant as it would be absorbed by the wearers skin.Test Method F1052 is not applicable to the range of protectiveensembles that are evaluated by this test method.5.1.2 This test method differs from Test Method F1359 by

26、using a chemical agent vapor simulant as compared to a liquidchallenge and in the use of human test subjects. This testmethod further provides a quantitative assessment of inwardleakage for the chemical agent vapor simulant.5.1.3 The use of this test method to determine the inwardleakage of other ch

27、emical vapor threats must be evaluated ona case-by-case basis.5.2 This test method is applied to complete ensemblesconsisting of a suit or garment in combination with gloves,footwear, respirators, and interface devices.5.2.1 This test method permits any combination or configu-ration of ensemble elem

28、ents and components, including en-sembles where the respirator covers the face or head.5.2.2 This test method accommodates protective ensemblesor protective clothing having any combination of the followingcharacteristics:(1) the protective ensemble or clothing is constructed of airpermeable, semiper

29、meable, or impermeable fabrics,(2) the protective ensemble or clothing is of a single ormulti-layered design, or(3) the protective ensemble or clothing is constructed ofinert or sorptive fabrics.5.3 MeS has been used as a simulant for chemical warfareagents. MeS is primarily a simulant for distilled

30、 mustard (HD)with a similar vapor pressure, density, and water solubility. Theuse of MeS in vapor form does not simulate all agents orhazardous substances to which ensemble wearers are poten-tially exposed.5.4 The principal results of this test are physiologicalprotective dosage factors that indicat

31、e the relative effectivenessof the ensemble in preventing the inward leakage of thechemical agent vapor simulant and its consequent dosage to thewearers skin as determined by the use and placement ofpersonal adsorbent devices (PAD) on human test subjects.5.4.1 Specific information on inward leakage

32、of chemicalagent vapor simulant is provided by local physiological pro-tective dosage factors for individual PAD locations to assist indetermining possible points of entry of the chemical agentvapor simulant into the ensemble.5.4.2 The determination of the local physiological protec-tive dosage fact

33、ors is based on ratio of the outside exposuredosage to the inside exposure dosage on the wearers skin atspecific locations of the body and accounts for the specificsusceptibility of the average humans skin at those locations tothe effects of blister agent, distilled mustard using the onset ofsymptom

34、s exposure dosages (OSED) at different points on thebody. The specific OSED values used in this test method arebased on the exposure concentration of distilled mustard thatcause threshold effects to the average individual human in theform of reversible skin ulceration and blistering (1).5.4.3 The bo

35、dy locations chosen for the placement of PADswere chosen to represent the range of body areas on the humanbody, with preference to those body areas generally nearinterfaces found in common two-piece ensembles with separaterespirator, gloves, and footwear. Additional locations are per-mitted to be us

36、ed for the placement of PAD where there arespecific areas of interest for evaluating the inward leakage ofthe chemical agent vapor simulant.NOTE 1Common interface areas for protective ensemble include thehood to respirator facemask, clothing or suit closure, upper torso garmentF2588 122to lower tors

37、o garment, garment sleeve to glove, and garment pant cuff tofootwear.5.4.4 An assessment of the vapor penetration and perme-ation resistance for the entire ensemble is provided by thedetermination of a systemic physiological protective dosagefactor. The same PAD data are used in a body region hazard

38、analysis to determine the overall physiological protectivedosage factor accounting for the areas of the body representedby the location, and the relative effects of the nerve agent, VX.Asystemic analysis assists in the evaluation for those chemicalagents, such as nerve agents, affecting the human bo

39、dy througha cumulative dose absorbed by the skin (2).5.4.5 Examples of analyses applying PAD data for theassessment of ensemble inward leakage resistance are providedin NFPA 1971, Standard on Protective Ensemble for Structuraland Proximity Fire Fighting, and NFPA 1994, Standard onProtective Ensemble

40、 for CBRN Terrorism Incidents.5.4.6 The general procedures in this test method are basedon Test Operations Procedure (TOP 10-2-022), Man-In-Simulant Test (MIST) - Chemical Vapor Testing of Chemical/Biological Protective Suits.5.5 The human subject activities simulate possible causes ofchanges in ens

41、emble vapor barrier during expected activities.These activities are primarily based on stationary activitiesprovided in Part A of Practices F1154 and are intended tocreate movements that are likely to affect the integrity of theensemble and its interface areas. Additional activities (such asdragging

42、 a dummy and climbing a ladder) have been added tosimulate activities that might be used by first responders duringemergency events such as rescuing victims from a terrorismincident involving chemical agents. The test method permitsthe modification of the activity protocol to simulate the specificne

43、eds of the protective ensemble application.5.6 The length of the human subject exposure to thechemical agent vapor simulant is set at 30 min in the testchamber with a 5 min decontamination period. This testduration is intended to replicate a possible exposure of a firstresponder during a terrorism i

44、ncident involving chemicalagents. If a self-contained breathing apparatus is used, a60-min rated respirator must be used or provisions made forsupplemental umbilical air (through a supplied air system).Thetest method permits the adjustment of the exposure period tosimulate the specific needs of the

45、protective ensemble appli-cation.5.7 Test results generated by this test method are specific tothe ensemble being evaluated. Changing any part of theensemble necessitates a new set of testing for the modifiedensemble.5.8 Additional information on man-in-simulant testing isprovided in (3).6. Faciliti

46、es and Apparatus6.1 Test ChamberA sealed chamber having the followingcharacteristics:6.1.1 Provides a minimum volume of sufficient dimensionsto permit free movement of the test subject(s) when fullydressed in the ensemble.6.1.2 Maintains a temperature of 27 6 5C (80 6 10F) andrelative humidity of 65

47、 6 20 %.6.1.3 Provides a nominal range of wind speed of 0.92.2m/s (25 mph).6.2 Other Test FacilitiesAreas for the test operator(s),dressing, decontamination, first stage undressing, and secondstage undressing.6.2.1 A test operator area shall be located immediatelyadjacent to the test chamber and sha

48、ll include the monitoringequipment for the test chamber MeS concentration, tempera-ture, humidity, and air speed. The test operator area shallinclude a means for test operators to directly observe testsubject(s) in the chamber.6.2.2 The dressing area shall be located away from the testchamber to ens

49、ure that this area is free from contamination bythe test agent.6.2.3 The area for decontamination shall be well ventilated,physically isolated from the test chamber, and one that permitsready drainage of wash water.6.2.4 The first stage undressing area shall be adjacent to thedecontamination area, but well away from the test chamber.6.2.5 The second stage undressing area shall be adjacent andaccessible to the first stage undressing area.6.3 MeS Generator, a vapor generator that must be capableof operation by remote control from the test operator area andshal

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1