1、Designation: F2620 111 F2620 12 An American National StandardStandard Practice forHeat Fusion Joining of Polyethylene Pipe and Fittings1This standard is issued under the fixed designation F2620; the number immediately following the designation indicates the year oforiginal adoption or, in the case o
2、f revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1 NOTEThe title of Table 3 was editorially corrected in December 2011.1. Scope Scope*1.1 This practice des
3、cribes procedures for making joints with polyethylene (PE) pipe and fittings by means of heat fusion joiningin, but not limited to, a field environment. Other suitable heat fusion joining procedures are available from various sourcesincluding pipe and fitting manufacturers. This standard does not pu
4、rport to address all possible heat fusion joining procedures, orto preclude the use of qualified procedures developed by other parties that have been proved to produce reliable heat fusion joints.1.2 The parameters and procedures are applicable only to joining polyethylene pipe and fittings of relat
5、ed polymer chemistry.They are intended for PE fuel gas pipe per Specification D2513 and PE potable water, sewer and industrial pipe manufactured perSpecification F714, Specification D3035, and AWWA C901 and C906. Consult with the pipe manufacturers to make sure theyapprove this procedure for the pip
6、e to be joined (see Appendix X1).NOTE 1Information about polyethylene pipe and fittings that have related polymer chemistry is presented in Plastics Pipe Institute (PPI) TR-33 andTR-41.1.3 Parts that are within the dimensional tolerances given in present ASTM specifications are required to produce s
7、ound jointsbetween polyethylene pipe and fittings when using the joining techniques described in this practice.1.4 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for informationonly.1.5 The text of this practice references notes, footnot
8、es, and appendixes which provide explanatory material. These notes andfootnotes (excluding those in tables and figures) shall not be considered as requirements of the practice.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the respons
9、ibilityof the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatorylimitations prior to use.2. Referenced Documents2.1 ASTM Standards:2D2513 Specification for Polyethylene (PE) Gas Pressure Pipe, Tubing, and FittingsD3035 Specificati
10、on for Polyethylene (PE) Plastic Pipe (DR-PR) Based on Controlled Outside DiameterF714 Specification for Polyethylene (PE) Plastic Pipe (DR-PR) Based on Outside DiameterF1056 Specification for Socket Fusion Tools for Use in Socket Fusion Joining Polyethylene Pipe or Tubing and Fittings2.2 PPI Docume
11、nts:TR-33 Generic Butt Fusion Joining Procedure for Field Joining of Polyethylene3TR-41 Generic Saddle Fusion Joining Procedure for Polyethylene Gas Piping32.3 AWWA Documents:AWWA C901 Standard for Polyethylene (PE) Pressure Pipe and Tubing, 12 in. (13 mm) through 3 in. (76 mm), for WaterService4AWW
12、A C906 Standard for Polyethylene (PE) Pressure Pipe and Fittings, 4 in. (100 mm) through 63 in. (1575 mm), for WaterDistribution and Transmission41 This practice is under the jurisdiction of ASTM Committee F17 on Plastic Piping Systems and is the direct responsibility of Subcommittee F17.20 on Joini
13、ng.Current edition approved Nov. 1, 2011Aug. 1, 2012. Published November 2011.December 2012. Originally approved in 2006. Last previous edition approved in 20092011as F262009F2620111. DOI: 10.1520/F2620-11.10.1520/F2620-12.2 For referenced ASTM standards, visit the ASTM website, www.astm.org, or con
14、tact ASTM Customer Service at serviceastm.org. For Annual Book of ASTM Standardsvolume information, refer to the standards Document Summary page on the ASTM website.3 Available from Plastics Pipe Institute (PPI), 105 Decker Court, Suite 825, Irving, TX 75062, http:/www.plasticpipe.org.4 Available fr
15、om American Water Works Association (AWWA), 6666 W. Quincy Ave., Denver, CO 80235, http:/www.awwa.org.This document is not an ASTM standard and is intended only to provide the user of an ASTM standard an indication of what changes have been made to the previous version. Becauseit may not be technica
16、lly possible to adequately depict all changes accurately, ASTM recommends that users consult prior editions as appropriate. In all cases only the current versionof the standard as published by ASTM is to be considered the official document.*A Summary of Changes section appears at the end of this sta
17、ndardCopyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States13. Summary of Practice3.1 The principle of heat fusion joining of polyethylene (PE) pipe is to heat two prepared surfaces to a designated temperature,then fuse them together by appl
18、ication of a sufficient force. This force causes the melted materials to flow and mix, therebyresulting in fusion.3.2 The heat-fusion procedures covered in this practice are socket fusion, butt fusion, and saddle fusion.3.2.1 Procedure 1, Socket FusionThe socket-fusion procedure involves simultaneou
19、sly heating the outside surface of a pipeend and the inside of a fitting socket, which is sized to be smaller than the smallest outside diameter of the pipe. After the propermelt has been generated at each face to be mated, the two components are joined by inserting one component into the other. See
20、Fig. 1. The fusion bond is formed at the interface resulting from the interference fit. The melts from the two components flowtogether and fuse as the joint cools. Optional alignment devices are used to hold the pipe and socket fitting in longitudinalalignment during the joining process; especially
21、with pipe sizes IPS 3 in. (89 mm) and larger. Automated socket fusion is notaddressed in this procedure.3.2.2 Procedure 2, Butt FusionThe butt-fusion procedure in its simplest form consists of heating the squared ends of twopipes, a pipe and a fitting, or two fittings, by holding them against a heat
22、ed plate, removing the heater plate when the proper meltis obtained, promptly bringing the ends together, and allowing the joint to cool while maintaining the appropriate applied force.3.2.2.1 An appropriately sized butt fusion machine is used to clamp, align and face the pipe or fitting ends and to
23、 apply thespecified fusion force. See Fig. 2.3.2.3 Procedure 3, Saddle FusionThe saddle-fusion procedure involves melting the concave surface of the base of a saddlefitting, while simultaneously melting a matching pattern on the surface of the pipe, bringing the two melted surfaces together andallow
24、ing the joint to cool while maintaining the appropriate applied force. See Fig. 3.3.2.3.1 An appropriately sized saddle fusion machine is used to clamp the pipe main and the fitting, align the parts and applythe specified fusion force.4. Significance and Use4.1 The procedures described in Sections 7
25、-9 are primarily intended for (but not limited to) field joining of polyethylene (PE)pipe and fittings, using suitable equipment and appropriate environmental control procedures. When properly implemented, strongpressure/leak-tight joints are produced. When these joints are destructively tested, the
26、 failure occurs outside the fusion joined area.4.2 Melt characteristics, average molecular weight and molecular weight distribution are influential factors in establishingsuitable fusion parameters; therefore, consider the manufacturers instructions in the use or development of a specific fusionproc
27、edure. See Annex A1.4.3 The socket fusion, butt fusion, and saddle fusion procedures in this practice are suitable for joining PE gas pipe and fittings,PE water pipe and fittings, and PE general purpose pipes and fittings made to PE product specifications from organizations suchFIG. 1 Socket FusionF
28、2620 122as ASTM, AWWA, API, and ISO that are used in pressure, low pressure and non-pressure applications. For gas applications,qualification of the procedure by testing joints made using the procedure in accordance with regulations from the authority havingjurisdiction are required.5. Operator Expe
29、rience5.1 Skill and knowledge on the part of the operator are required to obtain a good quality joint. This skill and knowledge isobtained by making joints in accordance with proven procedures under the guidance of skilled operators. Evaluate operatorproficiency by testing sample joints.FIG. 2 Butt
30、FusionFIG. 3 Saddle FusionF2620 1235.2 The party responsible for the joining of polyethylene pipe and fittings shall ensure that detailed procedures developed inconjunction with applicable codes and regulations and the manufacturers of the pipe, fittings, and joining equipment involved,including the
31、 safety precautions to be followed, are issued before actual joining operations begin.6. ApparatusGeneral Recommendations6.1 Heating ToolElectric heating tools come in a variety of sizes that match the fusion machines capabilities. They aredesigned with enough wattage and electronic control to maint
32、ain the specified heater face temperature required in this procedure.The range of the heater control shall be larger than the heating temperature specification (the typical control range is 50F (30C)above and below the maximum and minimum required heating tool surface temperatures. Electric heating
33、plates maintainconsistent fusion temperatures when provided with an adequate power source.6.2 Heating Tool FacesHeating tools may be made from materials such as aluminum, stainless steel, copper, or copper alloys.Polyethylene material may stick to hot metal heating surfaces. This sticking may be min
34、imized by applying a non-stick coatingto the heating surfaces or by fitting a high-temperature, non-stick fabric over the heating surfaces. The heating plate surfaces,coated or uncoated, shall be kept clean and free of contaminants such as dirt, grease and plastic build-up, which may causeexcessive
35、sticking and create unsatisfactory joints. Most of these contaminants are removed from the hot tool surfaces using aclean, dry, oil-free lint-free cloth. lint-free, non-synthetic cloth such as cotton. Do not use synthetic fabrics which may char andstick to the fusion surface. Some pigments, such as
36、carbon black, may stain a heating surface and probably cannot be removed;such stains will not contaminate the joint interface.6.2.1 After a period of time in service, non-stick coatings or fabrics will deteriorate and become less effective. Deterioratedfabrics shall be replaced, and worn, scratched,
37、 or gouged non-stick coatings shall be re-coated when they lose effectiveness. Heatfusion quality may be adversely affected by deteriorated non-stick surfaces. Spray-on chemicals, such as non-stick lubricants oroils shall not be applied to heating iron surfaces as they will contaminate the joint.6.3
38、 Temperature IndicatorHeating tools shall be equipped with a thermometer or other built-in temperature indicating device.This device indicates the internal temperature of the heating iron, which is usually higher than temperature of the heating toolsurfaces. Use a pyrometer, or other temperature mea
39、suring device, on the first joint of the day and periodically during the day toverify the temperature of the tool face surfaces within the pipe or fitting contact area. Select multiple checkpoints to ensure uniformsurface temperature. An infrared pyrometer is calibrated by comparison to a calibrated
40、 surface pyrometer and adjusted to agree oneach heating tool.NOTE 2A significant temperature variation, that is, cold spots, on the heating tool surfaces may indicate a faulty heating iron which may need to beserviced before it can be used.7. Procedure 1Socket Fusion7.1 Apparatus:7.1.1 Socket Fusion
41、 ToolsSocket fusion tools consist of a heating tool, heating tool faces, rounding clamps (cold rings), depthgage/chamfer tools, and pipe/fittings made to ASTM specifications.7.1.2 Heating ToolIn order to obtain a proper melt, it is necessary for a uniform temperature to be maintained across theheati
42、ng tool faces. An electrical tool shall have sufficient wattage and control to maintain the specified surface temperature of thetool faces.7.1.3 Heating Tool FacesConsisting of two parts, a male end for the interior socket surface and a female end for the exteriorpipe surface. Both parts shall be ma
43、de to such tolerances as to cause an interference fit. Heating tool faces are produced toSpecification F1056 dimensions, and are coated with a non-stick material to keep melted pipe and fitting material from stickingto the face.7.1.4 Alignment JigThe alignment jig is an optional tool which consists
44、of two sets of devices holding the components inalignment to each other. One set of holding devices is fixed, and the other allows longitudinal movement for making the joint.7.1.5 Rounding Clamps, (cold ring) to maintain roundness of the pipe and control the depth of pipe insertion into the socketdu
45、ring the joining operation.7.1.6 Depth Gage, for proper positioning of the rounding clamp on the pipe.7.1.7 Chamfering Tool, to bevel the end of the pipe.NOTE 3The depth gage and chamfering tool may be combined into a single tool.7.1.8 Tubing Cutter, to obtain a square end cut on the pipe.7.1.9 Fitt
46、ing Puller, an optional tool to assist in the removal of the fitting from the heating tool and to hold the fitting duringassembly.7.2 Procedure:7.2.1 Attach the proper size heater faces to the heating tool, and bring the surface temperature of the tool faces to 490 to 510F(254 to 266C). Use a pyrome
47、ter, or other temperature measuring device, on the first joint of the day and periodically during theday to verify the temperature of the tool face surfaces within the pipe or fitting contact area. Select multiple checkpoints to ensureF2620 124uniform surface temperature. Heating tool thermometers m
48、easure the internal temperature of the heating tool, which is typicallyhigher than the surface temperature of the heating tool faces.7.2.2 Cut the pipe end squarely, and clean the pipe end and fitting, both inside and outside, by wiping with a clean, dry, oil-free,lint-free cloth.lint-free, non-synt
49、hetic cloth such as cotton. If this does not remove the contamination, refer to X1.7.1.7.2.3 Chamfer the outside edge of the pipe end slightly and fix the rounding clamp about the pipe as determined from the depthgage. (See Note 4.)7.2.4 Clean the heater adapters by wiping them with a clean, dry, lint-free, non-synthetic cloth such as cotton to remove anycontamination from the surfaces. Push the socket fitting onto the preheated fitting tool face first, and then push the pipe into thepipe-side tool face until the rounding clamps make contact with the
copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1