ImageVerifierCode 换一换
格式:PDF , 页数:6 ,大小:177.85KB ,
资源ID:540077      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-540077.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM F3140-2017 Standard Test Method for Cyclic Fatigue Testing of Metal Tibial Tray Components of Unicondylar Knee Joint Replacements《单髁膝关节置换金属胫骨托盘部件循环疲劳试验的标准试验方法》.pdf)为本站会员(sofeeling205)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM F3140-2017 Standard Test Method for Cyclic Fatigue Testing of Metal Tibial Tray Components of Unicondylar Knee Joint Replacements《单髁膝关节置换金属胫骨托盘部件循环疲劳试验的标准试验方法》.pdf

1、Designation: F3140 17Standard Test Method forCyclic Fatigue Testing of Metal Tibial Tray Components ofUnicondylar Knee Joint Replacements1This standard is issued under the fixed designation F3140; the number immediately following the designation indicates the year oforiginal adoption or, in the case

2、 of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers a procedure for the fatiguetesting of metallic tibial trays used in

3、partial knee jointreplacements.1.2 This test method covers the procedures for the perfor-mance of fatigue tests on metallic tibial components using acyclic, constant-amplitude force. It applies to tibial trays whichcover either the medial or the lateral plateau of the tibia.1.3 This test method may

4、require modifications to accom-modate other tibial tray designs.1.4 This test method is intended to provide useful,consistent, and reproducible information about the fatigueperformance of metallic tibial trays with unsupported mid-section of the condyle.1.5 The values stated in SI units are to be re

5、garded asstandard. No other units of measurement are included in thisstandard.1.6 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establish appro-priate safety, health and environmental prac

6、tices and deter-mine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accor-dance with internationally recognized principles on standard-ization established in the Decision on Principles for theDevelopment of International Standards, Guides an

7、d Recom-mendations issued by the World Trade Organization TechnicalBarriers to Trade (TBT) Committee.2. Referenced Documents2.1 ASTM Standards:E467 Practice for Verification of Constant Amplitude Dy-namic Forces in an Axial Fatigue Testing SystemE468 Practice for Presentation of Constant Amplitude F

8、a-tigue Test Results for Metallic MaterialsE739 Practice for StatisticalAnalysis of Linear or LinearizedStress-Life (S-N) and Strain-Life (-N) Fatigue DataE1823 Terminology Relating to Fatigue and Fracture TestingE1800 Specification for Adhesive for Bonding Foam CoredSandwich Panels (160F Elevated H

9、umidity Service),Type I PanelsE1823 Terminology Relating to Fatigue and Fracture TestingE2083 Classification for Building Construction FieldRequirements, and Office Overhead formation of a crack detectable by eye; fluorescent dyepenetrant, or other non-destructive means; or exceeding apredetermined

10、deflection limit.10. Report10.1 Report the fatigue test specimens, procedures, andresults in accordance with Practice E468.10.2 In addition, report the following parameters: tibial traymaterial, spacer diameter and thickness, indenter diameter orsmallest femoral component contact area at 0-60 degree

11、flexion, overall anteroposterior and mediolateral dimensions ofthe tray, location of anteroposterior and mediolateral center-lines (for asymmetric tibial trays), tibial condyle maximumdeflection during test, dml, dap, fixation method, largest com-pressive force, R value, cycles to failure, mode and

12、location offailures, test environment, and test frequency. The method fordetermining the loading location on the tibial tray (that is, dml,and dap) shall be documented.10.3 Pictures of the tray and test setup pre- and post-testingshould be included in the report. If tibial tray fractured duringtest,

13、 pictures should include superior and inferior views todocument the location of crack and failure mode.10.4 If any test results are excluded for any reason, thereport must include adequate documentation justifying theirexclusion.11. Keywords11.1 arthroplasty; orthopaedic medical devices; tibial com-

14、ponents; unicondylar knee arthroplastyF3140 174APPENDIX(Nonmandatory Information)X1. RATIONALEX1.1 Fractures of tibial trays in Unicondylar Knee Replace-ment (UKR) have occurred in clinical applications (2, 3). Thetray design, quality of bone, flatness of the cut surface andother features contribute

15、 to implant fracture. One recognizablemode of clinical failure occurs when the anterior and posterioredges of the implant are resting on cortical bone while themid-section is unsupported. This can be due to the skiving ofthe cutting tool or the posterior bone fragments left behind dueto the breaking

16、 off of the cut bone to prevent posterolateralcorner ligament damage.As the body loads are applied throughthe tray of the prosthesis, significant stresses can result at thearea where the tray is unsupported. Because it is believed thatthis lack of support is the primary reason behind fracture of the

17、tibial trays, this practice was chosen as a simplified model touse in fatigue testing of actual implants.X1.2 It is recognized that for some materials the environ-ment may have an effect on the response to cyclic loading. Thetest environment used and the rationale for that choice shall bedescribed i

18、n the test reportX1.3 It is also recognized that actual in vivo loadingconditions are not of constant amplitude. However, there isinsufficient information available to create standard load spec-trums for metallic tibial components. Accordingly, a simpleperiodic constant amplitude force is recommende

19、d.X1.4 Worst-case loading of the tibial tray may vary, depend-ing on material, design, and clinical indications. The researchershall evaluate the possible clinical and design-related failuremodes and attempt to determine a worst-case situation. Asstated above, loss of central medial bone support has

20、 beenclinically observed and is thus incorporated in this practice.Also, as the method of heat treatment can affect the strength ofthe tibial tray material, it shall be considered. For example, thehigh temperature sintering treatment used to apply a porouscoating to a tibial tray may affect the fati

21、gue strength of thetibial tray.X1.5 The size of the tibial tray to be tested shall bedetermined by the investigator. In general, the worst-case sizeshall be chosen based on evaluation or experience, or both. Ina design with a constant tray thickness, maximizing the A/Plength will result in the large

22、st moment arm and therefore thehighest stresses in the tray; however, a tray of non-uniformthickness may not adhere to this rule. There may also be areason why an investigator wishes to test a size that is not worstcase. This practice may also be used for this purpose.X1.6 The tolerance chosen for t

23、he alignment of the tibialtray is based on finite element analysis of a tibial tray designwith and without a central keel. The analysis represents onedesign under specific boundary conditions and is shown as oneexample of the variation that can occur due to tibial traymisalignment. The conclusions o

24、f this analysis were as fol-lows:X1.6.1 The required tolerance limits (61mmand62)were chosen to minimize the change in stress while ensuring areasonable test setup.X1.7 In developing this practice, it was recognized thatalternative methods for testing tibial trays exist. One such testmethod would in

25、clude fixing the anterior or posterior half ofthe implant and following a cantilever type test. This practiceattempts to simplify the loading conditions while addressingclinical failure modes of tibial tray designs. Based on variousgoals, investigators may seek to deviate from the test methoddefined

26、 here.X1.8 Specification E2083 includes a performance criteriafor the tibial baseplate (tray) fatigue test method, PracticeE1800. The specification states that “each of five specimensshall be tested and pass for 10 million cycles with no failuresusing a maximum load of 900N as a minimum requirement.

27、”The maximum load of 900N was established as described inthe reference document cited in Specification E2083 and wasbased on the failure mode observed from a legally marketedTKR. In order to fully understand the mechanical fatiguebehavior of the UKR, users are encouraged to determine asufficient sam

28、ple size to establish a Linearized Stress-Life(S/N) type curve to characterize the failure load and mode (forexample, unacceptable deformation, material loss,delamination, fracture). The number of cycles based on statis-tical methods to establish an S/N curve with the minimumsamples required may be

29、determined by using Practice E739.Once the run-out load is determined from the S/N curve, aminimum of five samples is recommended to be tested to 10million cycles (based on Practice E1800) with no failure at thepredetermined load. The load used should be justified based onphysiological loading param

30、eters expected to be encounteredthroughout the lifetime of the implant. Any sample that failsbefore the recommended 10 million cycle limit indicates thatthe tibial tray design does not consistently meet the run-outload criteria determined from the S/N curve.F3140 175REFERENCES(1) Yildirim, G. Parker

31、, J.2014. A New Method for UKR Tibial TrayFatigue Testing. Society for Biomaterials Annual Meeting.(2) Palumbo, B.T., Henderson, E.R., Edwards, P.K., Burris, B., Gutirrez,S., Raterman, S.J.2011. Initial Experience of the Journey-DeuceBicompartmental Knee Prosthesis. The Journal of Arthroplasty 6 (6,

32、Suppl): 4045.(3) Manzotti, A., Chemello, C., Pullen, C., Cerveri, P., Confalonieri,N.2013. An uncommon cause of cemented unicompartmental kneearthroplasty failure: fracture of metallic components. Knee Surgery,Sports Traumatology, Arthroscopy Journal 21: 25182522.ASTM International takes no position

33、 respecting the validity of any patent rights asserted in connection with any item mentionedin this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the riskof infringement of such rights, are entirely their own responsibility.T

34、his standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years andif not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standardsand should be addressed to ASTM In

35、ternational Headquarters. Your comments will receive careful consideration at a meeting of theresponsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you shouldmake your views known to the ASTM Committee on Standards, at the address show

36、n below.This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959,United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the aboveaddress or at 610-832-9585 (phone), 610-832-9555 (fax), or serviceastm.org (e-mail); or through the ASTM website(www.astm.org). Permission rights to photocopy the standard may also be secured from the Copyright Clearance Center, 222Rosewood Drive, Danvers, MA 01923, Tel: (978) 646-2600; http:/ 176

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1