ImageVerifierCode 换一换
格式:PDF , 页数:8 ,大小:168.40KB ,
资源ID:540375      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-540375.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM G143-2003(2009) Standard Test Method for Measurement of Web Roller Friction Characteristics《测量卷材 滚子摩擦特性的标准试验方法》.pdf)为本站会员(twoload295)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM G143-2003(2009) Standard Test Method for Measurement of Web Roller Friction Characteristics《测量卷材 滚子摩擦特性的标准试验方法》.pdf

1、Designation: G 143 03 (Reapproved 2009)Standard Test Method forMeasurement of Web/Roller Friction Characteristics1This standard is issued under the fixed designation G 143; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year o

2、f last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This test method covers the simulation of a roller/webtransport tribosystem and the measurement of the static andkin

3、etic coefficient of friction of the web/roller couple whensliding occurs between the two. The objective of this testmethod is to provide users with web/roller friction informationthat can be used for process control, design calculations, andfor any other function where web/roller friction needs to b

4、eknown.1.2 The values stated in SI units are to be regarded asstandard. No other units of measurement are included in thisstandard.1.3 This standard does not purport to address all of thesafety concerns, if any, associated with its use. It is theresponsibility of the user of this standard to establi

5、sh appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2. Referenced Documents2.1 ASTM Standards:2D 883 Terminology Relating to PlasticsD 1894 Test Method for Static and Kinetic Coefficients ofFriction of Plastic Film and SheetingD 3108 Te

6、st Method for Coefficient of Friction, Yarn toSolid MaterialE8 Test Methods for Tension Testing of Metallic MaterialsE 122 Practice for Calculating Sample Size to Estimate,With Specified Precision, the Average for a Characteristicof a Lot or ProcessE 177 Practice for Use of the Terms Precision and B

7、ias inASTM Test MethodsE 691 Practice for Conducting an Interlaboratory Study toDetermine the Precision of a Test MethodG40 Terminology Relating to Wear and ErosionG115 Guide for Measuring and Reporting Friction Coeffi-cientsG117 Guide for Calculating and Reporting Measures ofPrecision Using Data fr

8、om Interlaboratory Wear or Ero-sion TestsG 163 Guide for Digital Data Acquisition in Wear andFriction Measurements3. Terminology3.1 Definitions of Terms Specific to This Standard:3.1.1 blocking, nunintentional adhesion between plasticfilms or between a film and another surface. D 8833.1.2 coeffcient

9、 of friction, , nin tribologythe dimen-sionless ratio of the friction force (F) between two bodies to thenormal force (N) pressing these bodies together. G403.1.3 friction force, nthe resisting force tangential to theinterface between two bodies when, under the action ofexternal force, one body move

10、s or tends to move relative to theother. G403.1.4 kinetic coeffcient of friction, nthe coefficient offriction under conditions of macroscopic relative motion be-tween two bodies. G403.1.5 stick-slip, na cyclic fluctuation in the magnitudes offriction force and relative velocity between two elements

11、insliding contact, usually associated with a relaxation oscillationdependent on elasticity in the tribosystem and on a decrease ofthe coefficient of friction with onset of sliding or with increaseof sliding velocity. G403.1.5.1 DiscussionClassical or true stick-slip, in whicheach cycle consists of a

12、 stage of actual stick followed by astage of overshoot slip, requires that the kinetic coefficient islower than the static coefficient. A modified form of relaxationoscillation, with near-harmonic fluctuation in motion, canoccur when the kinetic coefficient of friction decreases gradu-ally with incr

13、easing velocity within a certain velocity range. Athird type of stick-slip can be due to spatial periodicity of thefriction coefficient along the path of contact. Random varia-tions in friction force measurement do not constitute stick-slip.3.1.6 triboelement, none of two or more solid bodieswhich c

14、omprise a sliding, rolling, or abrasive contact, or abody subjected to impingement or cavitation. G401This test method is under the jurisdiction of ASTM Committee G02 on Wearand Erosion and is the direct responsibility of Subcommittee G02.50 on Friction.Current edition approved May 1, 2009. Publishe

15、d May 2009. Originallyapproved in 1996. Last previous edition approved in 2004 as G 14303(2004).2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Docume

16、nt Summary page onthe ASTM website.1Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.3.1.6.1 DiscussionContacting triboelements may be indirect contact, or may be separated by an intervening lubricant,oxide, or other film that affects

17、tribological interactions be-tween them.3.1.7 tribosystem, nany system that contains one or moretriboelements, including all mechanical, chemical, and envi-ronmental factors relevant to tribological behavior. G404. Summary of Test Method4.1 This test method can be used to measure the frictioncharact

18、eristics of a flexible web as it slides on a cylindricalsurface. The web conforms to the cylindrical surface in the areaof wrap.4.2 The test method is conducted on a narrow web or striptaken from a web of interest. One end of the strip is drapedover a stationary cylinder and the other end is affixed

19、 to a forcemeasuring device. A mass is applied to the free end of the stripand the strip is pulled by a mechanism that moves the forcetransducer perpendicular to the long axis of the cylindricalsurface. The force encountered in pulling the strip in contactwith the stationary cylinder (roller) is con

20、tinuously measuredand recorded. The static and kinetic coefficients of friction arecalculated from the force measured by the force transducer.5. Significance and Use5.1 This test method is intended to simulate the slip of aflexible web on a roller in a machine or tribosystem thatconveys web material

21、s. Flexible webs such as plastic sheeting,paper, elastomers, metal foils, and cloth are often transported inmanufacturing processes by combinations of driving and idlerrollers. The friction characteristics of the web/roller interfaceoften affects the web transport process. If the web/rollerfriction

22、is too low, the web can slip on the rollers and bedamaged or damage the roller. High friction on the other hand,can lead to steering problems and overloading of drivingmotors.5.2 This test method can be used to rank rollers for theirability to resist slip versus a particular web material (highfricti

23、on). Conversely this test method can assess web materialsor web surface coatings such as waxes and lubricants. In thislatter case, the goal may be a low-friction product made froma web (film, magnetic media, paper, and so forth).5.3 If a tribosystem involves transport of a flexible web ona roller, t

24、his is an appropriate test to use to measure the frictioncharacteristics of the roller/web couple.6. Apparatus6.1 Two possible configurations of the test are shown inFigs. 1 and 2. The essential features of the apparatus are:6.1.1 A force measuring device attached to one member ofthe friction couple

25、,6.1.2 A stationary cylindrical surface to be used as onemember of the friction couple,6.1.3 A system to move the flexible strip (web) member ofthe friction couple, and6.1.4 Masses to be used to tension the free end of the teststrip.6.2 Force MeasurementCommercially available or home-made strain gag

26、e or similar force transducers are acceptable.The device should be linear in the force range anticipated intesting and the transducer shall be calibrated with knownmasses or a similar system for each use.6.2.1 Force transducers shall be accurate within 1 % of therated scale of the device and should

27、have overload protection.The friction force during the entire test should be recorded.(WarningDigital filters can alter the force data to the pointwhere the data are not valid. Analog strip chart recorders havebeen shown to be acceptable recording devices for this testmethod. (See Guide G 163 for de

28、tails on digital data acquisi-tion)6.3 Cylindrical SurfaceThe recommended diameter of thetest cylinder should be the same diameter as the rollers orcurved surface that is simulated in the friction test. Thecylinder surface texture and material of construction should bethe same as the tribosystem of

29、interest. If materials are beingevaluated without simulating a particular tribosystem, the testroller can be the same as the roller used in the interlaboratoryFIG. 1 Schematic of Capstan Friction TestFIG. 2 Use of Tensile Test Machine to Perform the CapstanFriction TestG 143 03 (2009)2tests of this

30、test method: 100-mm diameter (100 mm long),50-m thick hard coated (thick hard anodize) 6061-T6 alumi-num with a surface roughness of 0.75 to 1 m Ra (measuredparallel to the cylinders axis; surface was lathe generated).6.4 Sliding MotionThe device shown schematically inFig. 1 uses a linear motor to p

31、ull the test strip. The cylinder isstationary. Any device with controlled acceleration and veloc-ity is acceptable.Aball screw driven by a variable speed motoris suitable as is the crosshead on a tensile testing machine. Inthe latter case, it may be necessary to use a sheave with afree-wheeling roll

32、ing element bearing to transfer the motionfrom a vertical to horizontal plane (see Fig. 2).NOTE 1Some devices rotate the cylinder and hold the web with aforce transducer. This was done in interlaboratory tests and produced thesame results as pulling the web over a stationary cylinder.6.5 Tensioning

33、MassOrdinary masses from balances andsimilar laboratory equipment are suitable for tensioning. It isimperative to attach the masses and the friction transducerswith a device that prevents lateral motion of the test strip.Bridle devices such as the one shown in Fig. 3 allow a straightpull of the test

34、 strip. If lateral slip occurs in a particular test, theresults will probably be different from a test in which thisunwanted slip does not occur.6.6 Test EnvironmentThe friction characteristics of someweb/roller couples can be affected by the ambient temperatureand relative humidity. Both friction a

35、nd temperature at the timeof testing shall be recorded and, if the tribosystem that is to besimulated involves some special environment, then this shouldbe simulated. Test samples should be incubated for an adequatetime to reach equilibrium in the intended test environment priorto testing. Twenty fo

36、ur hours is a minimum incubation period.6.7 CalibrationA suitable system for calibration of theforce transducer is to mount the transducer vertically andsimply apply a series of known weights on the transducer withthe force recording device running. Make sure that the outputof the force transducer i

37、s linearly proportional to the appliedforce over the range of forces to be measured. Calibrate usingweights that produce force comparable in magnitude to theforces anticipated in the friction test.7. Test Procedure7.1 Specimen Preparation:7.1.1 Clean the roller surface in a manner that is consistent

38、with the application that is under simulation. Cut virgin stripsfrom the test web as the other friction member. Take care notto fingerprint or alter the test surface in handling the web.Convenient sample dimensions are 25 mm wide with a lengthof about 500 mm. Practice E 122 or other statistical meth

39、odscan be used to determine the necessary number of testreplicates. Three is the minimum.7.1.2 Do not clean the web specimen unless that is part ofthe study. If paper or plastic sheets are being tested, they shouldbe tested with untouched as-manufactured surfaces. Cut theweb specimen in such a fashi

40、on that there is no edge burr onthe side that contacts the roller. This is extremely important.Ensure that the edges of the strip are parallel and in the desiredorientation with respect to the long axis of the host web. Auseful tool for sample preparation is to affix two single-edgedrazor blades to

41、a block of wood spaced at the desired stripwidth. This device can be used to cut samples from thin plastic,cloth, and paper webs. The interlaboratory tests were con-ducted with web strips that were 25 mm in width and 500 mmlong.7.2 Mounting the SpecimenAffix one end of the web stripto the bridle end

42、 of the force transducer; drape the strip over thetest roller (cylindrical surface), and apply the desired tension-ing mass. Avoid clamp systems that have significant elasticity.If a tensile-testing machine is used to produce motion, flexiblesteel cable can be used to pull the strip. Ensure that the

43、 strip ispulled straight (aligned with the web tension) within 61 mm.Markers can be used on the test roller to determine if trackingis within the 1-mm limit.7.3 Setting the Sliding Parameters:7.3.1 VelocityThe capstan friction tester allows selectionof sliding velocity, sliding distance, and free-en

44、d tension on thestrip. It is recommended that values for these parameters beselected to simulate the system of interest. The sliding velocitybetween webs and transport or drive rollers in manufacturingmachines is usually in the range from a fraction of a percent ofthe web speed to a worst case of 10

45、 % of the web speed. (Forexample, if a web conveyance system is being simulated witha web speed of 1 m/s, a low-end test velocity may be 5 mm/sand the high-end test velocity 0.1 m/s.) There is a velocity limitin this type of test. High speed will cause instability in thecontact of the web with the c

46、onforming cylindrical surface.Users can test the velocity limits of their system, but 0.1 m/s isabout the limit of the systems that were used in interlaboratorytesting. A continuous loop test (Test Method D 3108) is moreappropriate for high sliding velocities.7.3.2 Sliding DistanceIf the goal of thi

47、s test method is thestatic coefficient of friction, the test can be stopped after a fewmillimetres of sliding. If the goal of this test method is both thestatic and the kinetic coefficients of friction, it is desirable toslide for as long a distance as the test setup will allow. With thetest setup s

48、hown in Fig. 1, the maximum travel on commerciallinear motors is about 0.5 m. The allowable motion on thepulling device is the limiting factor on sliding distance.Interlaboratory tests were conducted with a sliding distance of150 mm. This is the recommended sliding distance for this test.7.3.3 Test

49、TensionThe tensioning mass affixed to the freeend of the strip specimen can be any magnitude that willsimulate the system of interest. The practical limit is the massthat will produce tensile yielding or breaking of the test strip.FIG. 3 Method for Gripping the Test StripG 143 03 (2009)3The maximum tension that has been used in the ASTMinterlaboratory tests was 150 N on a 25-mm wide test strip.Repeatability tests were conducted with a tension of 4.45 N onthe 25 mm-wide test strip. It is advisable to test at a variety ofweb tensions if this is likely to

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1