ImageVerifierCode 换一换
格式:PDF , 页数:11 ,大小:164.13KB ,
资源ID:540446      下载积分:5000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-540446.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(ASTM G169-2001(2013) Standard Guide for Application of Basic Statistical Methods to Weathering Tests《自然老化试验基本统计方法应用的标准指南》.pdf)为本站会员(tireattitude366)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

ASTM G169-2001(2013) Standard Guide for Application of Basic Statistical Methods to Weathering Tests《自然老化试验基本统计方法应用的标准指南》.pdf

1、Designation: G169 01 (Reapproved 2013)Standard Guide forApplication of Basic Statistical Methods to WeatheringTests1This standard is issued under the fixed designation G169; the number immediately following the designation indicates the year oforiginal adoption or, in the case of revision, the year

2、of last revision. A number in parentheses indicates the year of last reapproval. Asuperscript epsilon () indicates an editorial change since the last revision or reapproval.1. Scope1.1 This guide covers elementary statistical methods for theanalysis of data common to weathering experiments. Themetho

3、ds are for decision making, in which the experiments aredesigned to test a hypothesis on a single response variable. Themethods work for either natural or laboratory weathering.1.2 Only basic statistical methods are presented. There aremany additional methods which may or may not be applicableto wea

4、thering tests that are not covered in this guide.1.3 This guide is not intended to be a manual on statistics,and therefore some general knowledge of basic and interme-diate statistics is necessary. The text books referenced at theend of this guide are useful for basic training.1.4 This guide does no

5、t provide a rigorous treatment of thematerial. It is intended to be a reference tool for the applicationof practical statistical methods to real-world problems thatarise in the field of durability and weathering. The focus is onthe interpretation of results. Many books have been written onintroducto

6、ry statistical concepts and statistical formulas andtables. The reader is referred to these for more detailedinformation. Examples of the various methods are included.The examples show typical weathering data for illustrativepurposes, and are not intended to be representative of specificmaterials or

7、 exposures.2. Referenced Documents2.1 ASTM Standards:2E41 Terminology Relating To ConditioningG113 Terminology Relating to Natural and Artificial Weath-ering Tests of Nonmetallic MaterialsG141 Guide for Addressing Variability in Exposure Testingof Nonmetallic Materials2.2 ISO Documents:ISO 3534/1 Vo

8、cabulary and Symbols Part 1: Probabilityand General Statistical Terms3ISO 3534/3 Vocabulary and Symbols Part 3: Design ofExperiments33. Terminology3.1 DefinitionsSee Terminology G113 for terms relatingto weathering, Terminology E41 for terms relating to condi-tioning and handling, ISO 3534/1 for ter

9、minology relating tostatistics, and ISO 3534/3 for terms relating to design ofexperiments.3.2 Definitions of Terms Specific to This Standard:3.2.1 arithmetic mean; averagethe sum of values dividedby the number of values. ISO 3534/13.2.2 blocking variablea variable that is not under thecontrol of the

10、 experimenter, (for example, temperature andprecipitation in exterior exposure), and is dealt with byexposing all samples to the same effects3.2.2.1 DiscussionThe term “block” originated in agricul-tural experiments in which a field was divided into sections orblocks having common conditions such as

11、 wind, proximity tounderground water, or thickness of the cultivatable layer.ISO 3534/33.2.3 correlationin weathering, the relative agreement ofresults from one test method to another, or of one test specimento another.3.2.4 medianthe midpoint of ranked sample values. Insamples with an odd number of

12、 data, this is simply the middlevalue, otherwise it is the arithmetic average of the two middlevalues.3.2.5 nonparametric methoda statistical method that doesnot require a known or assumed sample distribution in order tosupport or reject a hypothesis.3.2.6 normalizationa mathematical transformation

13、madeto data to create a common baseline.1This guide is under the jurisdiction of ASTM Committee G03 on Weatheringand Durability and is the direct responsibility of Subcommittee G03.93 on Statistics.Current edition approved June 1, 2013. Published June 2013. Originallyapproved in 2001. Last previous

14、edition approved in 2008 as G169 01 (2008)1.DOI: 10.1520/G0169-01R13.2For referenced ASTM standards, visit the ASTM website, www.astm.org, orcontact ASTM Customer Service at serviceastm.org. For Annual Book of ASTMStandards volume information, refer to the standards Document Summary page onthe ASTM

15、website.3Available from American National Standards Institute, 11 W. 42nd St., 13thFloor, New York, NY 10036.Copyright ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. United States13.2.7 predictor variable (independent variable) a variablecontributing to cha

16、nge in a response variable, and essentiallyunder the control of the experimenter. ISO 3534/33.2.8 probability distribution (of a random variable)afunction giving the probability that a random variable takes anygiven value or belongs to a given set of values. ISO 3534/13.2.9 random variablea variable

17、 that may take any of thevalues of a specified set of values and with which is associateda probability distribution.3.2.9.1 DiscussionA random variable that may take onlyisolated values is said to be “discrete.” A random variablewhich may take any value within a finite or infinite interval issaid to

18、 be “continuous.” ISO 3534/13.2.10 replicatestest specimens with nominally identicalcomposition, form, and structure.3.2.11 response variable (dependent variable) a randomvariable whose value depends on other variables (factors).Response variables within the context of this guide are usuallyproperty

19、 measurements (for example, tensile strength, gloss,color, and so forth). ISO 3534/34. Significance and Use4.1 The correct use of statistics as part of a weatheringprogram can greatly increase the usefulness of results. A basicunderstanding of statistics is required for the study of weath-ering perf

20、ormance data. Proper experimental design and sta-tistical analysis strongly enhances decision-making ability. Inweathering, there are many uncertainties brought about byexposure variability, method precision and bias, measurementerror, and material variability. Statistical analysis is used tohelp de

21、cide which products are better, which test methods aremost appropriate to gauge end use performance, and howreliable the results are.4.2 Results from weathering exposures can show differ-ences between products or between repeated testing. Theseresults may show differences which are not statistically

22、 signifi-cant. The correct use of statistics on weathering data canincrease the probability that valid conclusions are derived.5. Test Program Development5.1 Hypothesis Formulation:5.1.1 All of the statistical methods in this guide are designedto test hypotheses. In order to apply the statistics, it

23、 isnecessary to formulate a hypothesis. Generally, the testing isdesigned to compare things, with the customary comparisonbeing:Do the predictor variables significantly affect theresponse variable?Taking this comparison into consideration, it is possible toformulate a default hypothesis that the pre

24、dictor variables donot have a significant effect on the response variable. Thisdefault hypothesis is usually called Ho, or the Null Hypothesis.5.1.2 The objective of the experimental design and statisti-cal analysis is to test this hypothesis within a desired level ofsignificance, usually an alpha l

25、evel (). The alpha level is theprobability below which we reject the null hypothesis. It can bethought of as the probability of rejecting the null hypothesiswhen it is really true (that is, the chance of making such anerror). Thus, a very small alpha level reduces the chance inmaking this kind of an

26、 error in judgment. Typical alpha levelsare 5 % (0.05) and 1 % (0.01). The x-axis value on a plot of thedistribution corresponding to the chosen alpha level is gener-ally called the critical value (cv).5.1.3 The probability that a random variable X is greaterthan the critical value for a given distr

27、ibution is writtenP(Xcv). This probability is often called the “p-value.” In thisnotation, the null hypothesis can be rejected ifP(Xcv) cv)Separate variances 3.116 4.9 0.036Pooled variances 3.000 6.0 0.024P(Xcv) indicates the probability that a Studentst-distributed random variable is greater than t

28、he cv, that is, theFIG. 1 Selecting a MethodTABLE 2 STUDENTS t-TEST EXAMPLEColor Change Formula1.000 A1.200 A1.100 A0.900 A1.100 A1.300 B1.400 B1.200 BG169 01 (2013)4area under the tail of the t-distribution to the right of Point t.Since this value in either case is below a pre-chosen alpha levelof

29、0.05, the result is significant. Note that this result would notbe significant at an alpha level of 0.01.6.3 ANOVA:6.3.1 Analysis of Variance (ANOVA) performs comparisonslike the t-Test, but for an arbitrary number of predictorvariables, each of which can have an arbitrary number oflevels. Furthermo

30、re, each predictor variable combination canhave any number of replicates. Like all the methods in thisguide, ANOVA works on a single response variable. Thepredictor variables must be discrete. See Table 3.6.3.2 The ANOVA can be thought of in a practical sense asan extension of the t-Test to an arbit

31、rary number of factors andlevels. It can also be thought of as a linear regression modelwhose predictor variables are restricted to a discrete set. Hereis the example cited in the t-Test, extended to include anadditional formula, and another factor. The new factor is to testwhether the resulting for

32、mulation is affected by the technicianwho prepared it. There are two technicians and three formulasunder consideration.6.3.3 This example also illustrates that one need not haveidentical numbers of replicates for each sample. In thisexample, there are two replicates per factor combination forFormula

33、 A, but no replication appears for the other formulas.Analysis of VarianceResponse variable: COLOR CHANGESourceSum ofSquaresDegrees ofFreedom Mean square F Ratio P(Xcv)Formula 0.483 2 0.241 16.096 0.025Technician 0.005 1 0.005 0.333 0.604Error 0.045 3 0.015 - -6.3.4 Assuming an alpha level of 0.05,

34、the analysis indicatesthat the formula resulted in a significant difference in colorchange means, but the technician did not. This is evident fromthe probability values in the final column. Values below thealpha level allow rejection of the null hypothesis.6.4 Linear Regression:6.4.1 Linear regressi

35、on is essentially an ANOVA in whichthe factors can take on continuous values. Since discretefactors can be set up as belonging to a subset of some largercontinuous set, linear regression is a more general method. It isin fact the most general method considered in this guide. SeeTable 4.6.4.2 The mos

36、t elementary form of linear regression is easyto visualize. It is the case in which we have one predictorvariable and one response variable. The easy way to think ofthe predictor variable is as an x-axis value of a two dimensionalplot. For each predictor variable level, we can plot thecorresponding

37、measurement (response variable) as a value onthe ordinate axis. The idea is to see how well we can fit a lineto the points on the plot. See Table 5.6.4.3 For example, the following experiment looks at theeffect of an impact modifying ingredient level on impactstrength after one year of outdoor weath

38、ering in Arizona.6.4.4 The plot of ingredient level versus retained impactstrength shown with a linear fit and 95 % confidence bandslooks like: (See Fig. 2)6.4.5 This example illustrates the use of replicates at one ofthe levels. It is a good idea to test replicates at the levels thatare thought to

39、be important or desirable. The analysis indicatesa good linear fit. We see this from the R2value (squaredmultiple R) of 0.976. The R2value is the fraction of thevariability of the response variable explained by the regressionmodel, indicates the degree of fit to the model.6.4.6 The analysis of varia

40、nce indicates a significant rela-tionship between modifier level and retained impact strength inthis test (the probability level is well below an alpha level of5 %).Linear Regression AnalysisResponse Variable: Impact Retention (%)Number of Observations: 7Multiple R: 0.988Squared Multiple R: 0.976Sou

41、rceDegrees ofFreedom Sum of Squares F Ratio P(Xcv)Regression 1 0.0464 205.1 less than 0.0001Residual 5 0.0011 - -6.4.7 Regression can be easily generalized to more than onefactor, although the data gets difficult to visualize since eachfactor adds an axis to the plot (it is not so easy to viewmultid

42、imensional data sets). It can also be adapted to nonlinearmodels.Acommon technique for achieving this is to transformdata so that it is linear. Another way is to use nonlinear leastsquares methods, which are beyond the scope of this guide.Regression can also be extended to cover mixed continuousTABL

43、E 3 ANOVA EXAMPLEColor Change Formula Technician1.000 A Elmo1.100 A Elmo1.100 A Homer0.900 A Homer1.300 B Elmo1.400 B Judd1.200 B Homer0.700 C Elmo0.600 C HomerTABLE 4 REGRESSION EXAMPLEModifier Level Impact Retention After Exposure0.005 0.5350.01 0.60.02 0.6350.02 0.620.03 0.680.04 0.7540.05 0.79TA

44、BLE 5 PATHOLOGICAL LINEAR REGRESSION EXAMPLExv0.01 0.0299790.02 0.0543380.03 0.0885810.04 0.0824150.05 0.1266310.06 0.0734640.07 0.1232220.08 0.0970030.09 0.0997280.75 0.8059090.86 0.865667G169 01 (2013)5and discrete factors. It should be noted that most spreadsheetand elementary data analysis appli

45、cations can perform fairlysophisticated regression analysis.6.4.8 Another use of regression is to compare two predictorrandom variables at a number of levels for each. For example,results from one exposure test can be plotted against the resultsfrom another exposure. If the points fall on a line, th

46、en onecould conclude that the tests are “in agreement.” This is calledcorrelation. The usual statistic in a linear correlation analysis isR2, which is a measure of deviation from the model (a straightline). The R2values near one indicate good agreement with themodel, while those near zero indicate p

47、oor agreement. Thistype of analysis is different from the approaches suggestedabove which were constructed to test whether one randomvariable depended somehow on others. It should be noted,however, that correlation can always be phrased in ANOVA-like terms. The correlation example included for the S

48、pearmanrank correlation method illustrates this. The observations thenmake up a response random variable. Correlation on absoluteresults is not recommended in weathering testing. Instead,relative data (ranked data) often provide more meaningfulanalysis (see Spearmans rank correlation).6.4.9 Regressi

49、on/correlation can lead to misleadingly highR2values when the x-axis values are not well-spaced. Considerthe following example, which contains a cluster of data thatdoes not exhibit a good linear fit, along with a few outliers. Dueto the large spread in the x-axis values, the clustered dataappears almost as a single data point, resulting in a high R2value. (See Fig. 3).Linear Regression AnalysisNumber of Observations: 11Multiple R: 0.997Squared Multiple R: 0.994SourceDegrees ofFreedom Sum of Squares F Ratio P(Xcv)Regression 1 0.9235 1509 less than 0.0001Resi

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1