ImageVerifierCode 换一换
格式:PDF , 页数:577 ,大小:28.27MB ,
资源ID:542084      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-542084.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(AWS SHB-2000 Soldering Handbook (Third Edition).pdf)为本站会员(outsidejudge265)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

AWS SHB-2000 Soldering Handbook (Third Edition).pdf

1、SOLDERING HANDBOOK 3rd Editioni Soldering Handbook 3rd Edition by Paul T. Vianco, Ph.D. Sandia National Laboratories, Albuquerque, New Mexico 550 N. W . LeJeune Road, Miami, Florida 33126 550 N. W . LeJeune Road, Miami, Florida 33126International Standard Book Number: 0-87171-618-6 Copyright 1999 by

2、 the American Welding Society 550 N.W. LeJeune Road, Miami, FL 33026 All rights reserved Printed in the United States of America Photocopy Rights Authorization to photocopy items for internal, personal, or educational classroom use only, or the internal, personal, or educational classroom use only o

3、f specific clients, is granted by the American Welding Society (AWS) provided that the appropriate fee is paid to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, Tel: 978-750-8400; online: http:/ /iii Personnel A WS Committee on Brazing and Soldering D.W. Bucholz, Chair Confor

4、ma Clad, Incorporated J. R. Jachna, 1 stVice Chair Modine Mfg. Co. P . T. Vianco, 2 ndVice Chair Sandia National Laboratories C. B. Pollock, Secretary American Welding Society B. Barten Delphi Harrison Thermal Systems *R. E. Beal Amalgamated Technologies *S. S. Bhargava General Motors Corporation *A

5、. B. Cedilote Industrial Testing Laboratory Services N. C. Cole NCC Engineering, Incorporated *R. E. Cook Consultant R. G. Fairbanks Scarrott Metallurgical Company Y. Flom Goddard Space Flight Center C. E. Fuerstenau Lucas-Milhaupt Y. P. Gao Boeing-Rocketdyne P . K. Gupta Allied Signal Aerospace R.

6、L. Hall, Jr. Copper Development Association S. R. Hazelbaker Accurate Brazing Incorporated M. J. Higgins Praxair/Pyromet Group T. P . Hirthe Kru-Mar Mfg. Services Incorporated F . M. Hosking Sandia National Laboratories H. H. Lang York International Corporation *H. Lichtenberger Williams Advanced Ma

7、terials E. Liguori Scarrott Metallurgical M. J. Lucas, Jr. GE Aircraft Engineer *E. Lugscheider Aachen University of Technology *M. Manning General Electric Power Generation C. Moyer Praxair/Pyromet Group T. Oyama WESGO Incorporated C. A. Paponetti, Sr. HiTecMetal Group Incorporated R. L. Peaslee Wa

8、ll Colmonoy Corporation *D. D. Peter Daryl D. Peter and Associates A. Rabinkin Allied Signal, Incorporated *W. D. Rupert Engelhard Corporation M. L. Santella Oak Ridge National Laboratories J. L. Schuster Omni Technologies Corporation A. Severin Bradley Corporation J. R. Terrill Consultant *R. W. Wa

9、lls Princeton Engineering Group A WS Subcommittee on Soldering P . T. Vianco, Chair Sandia National Laboratories C. B. Pollock, Secretary American Welding Society *R. E. Beal Amalgamated Technologies C. E. Fuerstenau Alloy Ring Service P . K. Gupta Allied Signal Aerospace T. P . Hirthe Kru-Mar Mfg.

10、Services Incorporated F . M. Hosking Sandia National Laboratories R. W. Messler, Jr. Rensselaer Polytechnic Institute A. Rabinkin Allied Signal/Amorphous Metals *W. D. Rupert Engelhard Corporation *J. F . Smith Lead Industries Association *J. R. Terrill Consultant *Advisor iv Preface The perception

11、of soldering as a mature technology has been replaced over the past several years with an increased appreciation for the science and engineering principles that underlie the successful implementation of this joining tech- nique. Recent efforts to understand soldering technology have come about large

12、ly on the heels of the electronics revolu- tion, since soldering remains as the primary assembly technique for electronic component packaging and printed circuit board products. However, the narrow spotlight on electronics applications has expanded as technologists consider sol- dering processes for

13、 a wider range of structural applications. At present, several excellent textbooks are available on the topic of soldering. However, those references have tar- geted primarily electronics applications. It became apparent to the American Welding Society and, in particular, the AWS C3 Committee on Bra

14、zing and Soldering, that there is a growing need for a more generalized resource on soldering technology. It was also recognized that such a text should be written so as to be readily understood by individuals having a wide range of backgrounds; from the field assemblers and furnace operators to the

15、 engineering staff and technical man- agers. The opportunity to create such a text coincided with plans to revise the AWS Soldering Manual. The result of this effort is the Soldering Handbook. The Soldering Handbook is constructed with the following eight general topics: 1. Fundamentals of Soldering

16、 Technology; 2. Solder Materials; 3. Substrate Materials; 4. Fluxes; 5. Solder Pastes; 6. As- sembly Processes; 7. Inspection Techniques for Product Acceptance and Process Optimization; and 8. Environmental, Safety, and Health. Thorough discussions are provided in each of the major topical areas, in

17、cluding important principles on materials and processing as well as handy access to tabulated properties data. The text is formatted to serve as a refer- ence book; therefore, some information is duplicated in order to assure a clarity of discussion within each section. The handbook also provides a

18、substantial reference section at the end of the text which lists sources of information for those individuals wishing additional details on specific topics. It is the authors goal that the information provided in this handbook will allow soldering technology to be more fully utilized in advanced str

19、uctural joining applications, as well as to enhance its continued use as a critical assembly technol- ogy for the electronics industry. I wish to thank the volunteers of the AWS Technical Activities Committee and the AWS C3 Committee on Brazing and Soldering who reviewed the manuscript of this handb

20、ook. I also wish to thank Dr. Robert Messler, Jr. of Rensselaer Polytechnic Institute, for his critical and detailed examination of the manuscript and Howard Woodward of AWS for his efforts in editing of the handbook. Finally, I wish to thank Mr. Jerome Rejent and Ms. Alice Kilgo of Sandia National

21、Laboratories for their efforts in compiling the metallographic data used in the text. This work was supported in part by Sandia, a multiprogram laboratory operated by Sandia Corp., a Lockheed Martin Company, for the United States Dept. of Energy under Contract DE-AC04-94AL85000. This book is dedicat

22、ed to my wife Karen and daughters Maria and Sara. Paul T. Vianco, Ph.D. Chair, AWS C3B Subcommittee on Solderingv Table of Contents Page No. Personnel iii Preface.iv List of Tablesix List of Figures.xii 1. Fundamentals of Soldering Technology.1 1.1 Introduction3 1.2 Physical Metallurgy .3 1.2.1 Meta

23、ls and Alloys 3 1.2.1.1 Phase Diagrams .5 1.2.1.1.1 Binary Alloy Phase Diagrams5 1.2.1.1.2 Ternary Alloy Phase Diagrams 20 1.2.1.2 Structures and Properties .27 1.2.1.3 Solder Joint Formation and Microstructure.37 1.2.1.3.1 Wetting and Spreading of Molten Metals and Alloys (Equilibrium).37 1.2.1.3.2

24、 Wetting and Spreading of Molten Metals and Alloys (Kinetics).56 1.2.1.3.3 Solidification and Solder Joint Metallurgy 58 1.3 Solder Joint Design for Product Manufacturability and Service Reliability107 1.3.1 Product Manufacturability .107 1.3.2 Product Reliability .119 1.3.2.1 Static Loads .120 1.3.

25、2.2 Fatigue Loads.125 1.3.2.3 Corrosion .132 1.3.2.3.1 Atmospheric (Environmental) Corrosion.134 1.3.2.3.2 Galvanic-Assisted Corrosion .135 1.3.2.3.3 V oltage-Assisted Corrosion139 1.3.2.3.4 Stress Corrosion and Corrosion Fatigue Cracking.142 1.3.2.3.5 Corrosion Mitigation142 1.4 Solder Alloy Physic

26、al Properties: Measurement Techniques 144 1.4.1 Density .144 1.4.2 Electrical Properties .145 1.4.3 Thermal Properties.147 1.4.3.1 Thermal PropertiesDSC Analysis147 1.4.3.2 Thermal PropertiesDTA Analysis151 1.4.4 Fluid and Solderability Properties151 1.4.4.1 Fluid Properties152 1.4.4.2 Wetting/Sprea

27、ding and Solderability Properties155 1.5 Solder Alloy and Solder Joint Mechanical PropertiesMeasurement Techniques 164 1.5.1 Bulk Solder Mechanical Properties Measurements .165 1.5.2 Solder Joint Mechanical Properties Measurements .165 2. Solder Materials179 2.1 Introduction179 2.2 Contamination182

28、2.3 Specifications .187 2.4 Bulk and Joint Properties of Solder Alloys188 2.4.1 Tin, Tin-Lead, Tin-Lead-Antimony, Tin-Lead-Silver, and Lead-Silver Solders188 2.4.2 Tin-Antimony, Tin-Antimony-Silver (Copper), and Tin-Silver Alloys .207 2.4.3 Tin-Zinc, Zinc-Aluminum, and Other Zinc-Containing Solders

29、.215 2.4.4 Indium, Indium-Tin, Indium-Lead, and Other Indium-Containing Solders 218 2.4.5 Bismuth-Containing (Fusible) Solders219vi 2.4.6 Au-Based Solder Alloys.224 2.4.7 Cd-Containing Solder Alloys.228 3. Substrate Materials .229 3.1 Introduction229 3.2 Coatings .230 3.3 Metallic Substrate Material

30、s 238 3.3.1 Noble Metals and Alloys241 3.3.1.1 Alloy Descriptions.241 3.3.1.2 Solder Alloys .242 3.3.1.3 Cleaning Processes and Fluxes243 3.3.2 Copper and Cu-Based Alloys.243 3.3.2.1 Alloy Descriptions.243 3.3.2.2 Solder Alloys .248 3.3.2.3 Cleaning Processes and Fluxes248 3.3.3 Steels 252 3.3.3.1 A

31、lloy Descriptions.252 3.3.3.2 Solder Alloys .253 3.3.3.3 Cleaning Processes and Fluxes253 3.3.4 Stainless Steels and High-Alloy Fe-Based Materials 254 3.3.4.1 Alloy Descriptions.254 3.3.4.2 Solder Alloys .257 3.3.4.3 Cleaning Processes and Fluxes257 3.3.5 Nickel and Nickel-Based Alloys258 3.3.5.1 Al

32、loy Descriptions.258 3.3.5.2 Solder Alloys .261 3.3.5.3 Cleaning Processes and Fluxes261 3.3.6 Lead261 3.3.6.1 Alloy Descriptions.261 3.3.6.2 Solder Alloys .262 3.3.6.3 Cleaning Processes and Fluxes262 3.3.7 Aluminum and Al Alloys.263 3.3.7.1 Alloy Descriptions.263 3.3.7.2 Solder Alloys .268 3.3.7.3

33、 Cleaning Processes and Fluxes269 3.3.8 Magnesium and Mg Alloys275 3.3.8.1 Alloy Descriptions.275 3.3.8.2 Solder Alloys .277 3.3.8 3 Cleaning Processes and Fluxes279 3.3.9 Tin and Sn Alloys.280 3.3.9.1 Alloy Descriptions.280 3.3.9.2 Solder Alloys .281 3.3.9.3 Cleaning Processes and Fluxes281 3.3.10

34、Zinc and Zn Alloys 281 3.3.10.1 Alloy Descriptions.281 3.3.10.2 Solder Alloys .282 3.3.10.3 Cleaning Processes and Fluxes282 3.3.11 Refractory Metals and Alloys 283 3.3.11.1 Alloy Descriptions.283 3.3.11.2 Solder Alloys .283 3.3.11.3 Cleaning Processes and Fluxes283 3.3.12 Special MaterialsElectrica

35、l Contact Materials.284 3.3.12.1 Alloy Descriptions.284 3.3.12.2 Solder Alloys .285 3.3.12.3 Cleaning Processes and Fluxes285vii 3.4 Nonmetallic Materials286 3.4.1 Ceramics and Glasses.286 3.4.1.1 Material Description 286 3.4.2 Solder Alloys288 3.4.3 Cleaning Processes and Fluxes 288 4. Fluxes .291

36、4.1 Introduction291 4.1.1 Fundamental Concepts.291 4.1.2 How to Use a Flux294 4.1.3 Flux Types295 4.1.3.1 Rosin-Based Fluxes .297 4.1.3.2 Organic Acid Fluxes 300 4.1.3.3 Inorganic Acid Fluxes301 4.1.3.4 Reaction Fluxes .301 4.1.3.5 Atmospheres 304 4.1.3.5.1 Inert Atmospheres and Vacuum .304 4.1.3.5.

37、2 Reactive Atmospheres309 5. Solder Pastes.311 6. Assembly Processes313 6.1 Introduction313 6.2 Incoming Material Storage and Handling313 6.3 Preassembly Preparation (Precleaning) Processes.315 6.4 Soldering Processes319 6.4.1 Introduction319 6.4.1.1 A Global Perspective.319 6.4.1.2 Process Developm

38、ent Logistics.319 6.4.2 Hand Soldering 323 6.4.2.1 Soldering Iron 324 6.4.2.2 Soldering with a Torch (Flame).333 6.4.2.3 Process DevelopmentGeneral Remarks.345 6.4.3 Semiautomated and Automated Soldering.348 6.4.3.1 Variations on Torch Soldering (Robotic Automation).348 6.4.3.2 Furnace Soldering349

39、6.4.3.2.1 Apparatus .349 6.4.3.2.2 Process Development .354 6.4.3.3 Vapor Phase Soldering.385 6.4.3.4 Immersion (Dip) Soldering388 6.4.3.5 Induction Soldering .406 6.4.3.6 Resistance Soldering418 6.4.3.7 Laser Beam Soldering .423 6.4.3.8 Hot Gas Soldering .427 6.4.3.9 Ultrasonic Soldering 428 6.5 Po

40、stassembly Cleaning Techniques .435 6.5.1 Solder Assembly Residues.435 6.5.2 Cleaning Techniques 436 6.5.3 Verification Techniques443 6.6 Storage Considerations 444 7. Inspection Techniques for Product Acceptance and Process Optimization .447 7.1 Introduction447 7.2 Defects .447 7.3 Quantitative Def

41、ect Analysis .452 7.4 Defect Detection 454viii 7.4.1 Nondestructive Techniques 455 7.4.1.1 Visual Inspection and Microscopy.456 7.4.1.2 X-ray Radiography/Laminography458 7.4.1.3 Ultrasonic Inspection.461 7.4.1.4 Infrared (or Dynamic Thermal) Imaging.465 7.4.1.5 Pressure and Vacuum Leak Testing .468

42、7.4.1.6 Proof Testing470 7.4.1.7 Liquid Dye or Fluorescent Dye Penetrant .471 7.4.2 Destructive Techniques 472 7.4.2.1 Metallographic Cross-Sectioning 472 7.4.2.2 Mechanical Testing484 7.5 Rework and Repair.489 8. Environmental, Safety, and Health .501 8.1 Introduction501 8.2 Base Metals 503 8.3 Flu

43、xes .504 8.4 Solders505 8.5 Soldering Processes508 8.6 Cleaning Processes.509 Annexes A Solution of the Thermal Expansion Mismatch Equations for a Two-Base Material System (Single Joint) Having Isotropic Materials and Temperature-Independent Material Properties513 B Metallographic Sample Preparation

44、 Procedure for Soft Solder Joint Specimens 516 B.1 Grinding and Polishing Procedure .516 B.2 Etchant for Intermetallic Compound Layer AccentCu Substrate516 C Microstructures of Commonly Used Solder Alloys .517 D Use of Thermocouples to Monitor Part Temperatures .526 E References 531 Index .541ix Lis

45、t of Tables Table Page No. 1.1 Table of the Elements, Giving Symbol, Atomic Number, and Atomic Mass 8 1.2 D Parameters vs. the d m /H (r/H) Parameter for the Koshevnik et al., Calculation of the Solder/Flux Interfacial Tension LF 49 1.3 Solderability Parameters of c , LF , and SF SLMeasured by the W

46、ilhemy Plate (Wetting Balance) Configuration for a Variety of Substrate Materials, Solder Compositions, and Fluxes.51 1.4 Thermal Expansion Coefficients of Materials Commonly Encountered in Soldering Technology.72 1.5 Solid-State Growth Kinetics Parameters for Selected Solders on Cu Substrate91 1.6

47、Intermetallic Compound Layer Thickness on Soft and Hard Cu as a Function of Solder Alloy for Extended Aging Times (15 Years) .92 1.7 Solid-State Intermetallic Compound Layer Growth Kinetics for Sn and Sn-Pb Solder Coatings on 70Cu-30Zn (Half-Hard) Cartridge Brass 98 1.8 Solid-State Growth Kinetics P

48、arameters for Selected Solder and Substrate Combinations100 1.9 Temperature-Dependent Values of the Shear Modulus, G, the Shear Yield Stress, y , and the Shear Yield Strain, e , for 63Sn-37Pb Solder131 1.10 Standard Reduction Potentials (SRP) 138 1.11 Density, Electrical Conductivity, Thermal Conduc

49、tivity, and Coefficient of Thermal Expansion for Sn-Pb Alloys and Several Other Solders146 1.12 Viscosity Data for Selected Metals and Alloys154 1.13 Viscosity Data for Sn-Pb Alloys at Specific Temperatures155 1.14 Qualitative Description of Base Metal Wettabilities157 1.15 Guidelines and Specifications for Solderability Testing for Electronics Applications157 1.16 List of ASTM Test Methods and Practices for Evaluating the Mechanical Properties of Bulk Materials .166 1.17 List of ASTM Test Methods and Practices for Evaluation of the Mechanical Prope

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1