ImageVerifierCode 换一换
格式:PDF , 页数:40 ,大小:896.29KB ,
资源ID:542234      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-542234.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(AWWA C207-2018 Steel Pipe Flanges for Waterworks Service Sizes 4 In Through 144 In (100 mm Through 3 600 mm).pdf)为本站会员(bonesoil321)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

AWWA C207-2018 Steel Pipe Flanges for Waterworks Service Sizes 4 In Through 144 In (100 mm Through 3 600 mm).pdf

1、ANSI/AWWA C207-18 (Revision of ANSI/AWWA C207-13) AWWA Standard SM Steel Pipe Flanges for Waterworks Service, Sizes 4 In. Through 144 In. (100 mm Through 3,600 mm) Effective date: April 1, 2018. First edition approved by AWWA Board of Directors June 17, 1955. This edition approved Jan. 20, 2018. App

2、roved by American National Standards Institute Dec. 19, 2017.ii AWWA Standard This document is an American Water Works Association (AWWA) standard. It is not a specification. AWWA standards describe minimum requirements and do not contain all of the engineering and administrative information normall

3、y contained in specifications. The AWWA standards usually contain options that must be evaluated by the user of the standard. Until each optional feature is specified by the user, the product or service is not fully defined. AWWA publication of a standard does not constitute endorsement of any produ

4、ct or product type, nor does AWWA test, certify, or approve any product. The use of AWWA standards is entirely voluntary. This standard does not supersede or take precedence over or displace any applicable law, regulation, or code of any governmental authority. AWWA standards are intended to represe

5、nt a consensus of the water industry that the product described will provide satisfactory service. When AWWA revises or withdraws this standard, an official notice of action will be placed in the Official Notice section of Journal - American Water Works Association. The action becomes effective on t

6、he first day of the month following the month of Journal AWWA publication of the official notice. American National Standard An American National Standard implies a consensus of those substantially concerned with its scope and provisions. An American National Standard is intended as a guide to aid t

7、he manufacturer, the consumer, and the general public. The existence of an American National Standard does not in any respect preclude anyone, whether that person has approved the standard or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming t

8、o the standard. American National Standards are subject to periodic review, and users are cautioned to obtain the latest editions. Producers of goods made in conformity with an American National Standard are encouraged to state on their own responsibility in advertising and promotional materials or

9、on tags or labels that the goods are produced in conformity with particular American National Standards. Caution Notice : The American National Standards Institute (ANSI) approval date on the front cover of this standard indicates completion of the ANSI approval process. This American National Stand

10、ard may be revised or withdrawn at any time. ANSI procedures require that action be taken to reaffirm, revise, or withdraw this standard no later than five years from the date of ANSI approval. Purchasers of American National Standards may receive current information on all standards by calling or w

11、riting the American National Standards Institute, 25 West 43rd Street, Fourth Floor, New York, NY 10036; 212.642.4900; or emailing infoansi.org. ISBN-13, print: 978-1-62576-284-9 eISBN-13, electronic: 978-1-61300-465-4DOI: http:/dx.doi.org/10.12999/AWWA.C207.18 All rights reserved. No part of this p

12、ublication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information or retrieval system, except in the form of brief excerpts or quotations for review purposes, without the written permission of the publisher. Copyrigh

13、t 2018 by American Water Works Association Printed in USAiii Committee Personnel The Steel Water Pipe Manufacturers Technical Advisory Committee (SWPMTAC) Task Group on AWWA C207, which revised this standard, had the following personnel at the time: Mike Vanderbosch, Chair Brent Keil, Vice-Chair Gen

14、eral Interest Members S.A. Arnaout, US Pipe Inc., Dallas, Texas H.H. Bardakjian, Consultant, Glendale, Calif. E. Bird, Smith-Blair Inc., Texarkana, Texas S. Bradberry, Ford-Meter Box Company, Pell City, Ala. B. Card, Manufacturers Consultant, Sugar Hill, Ga. A. Collins, JCM Industries, Nash, Texas K

15、. Couture, American SpiralWeld Pipe Company, Birmingham, Ala. D. Dechant, Manufacturers Consultant, Aurora, Colo. R. Deremiah, Hanson Pressure Pipe Inc., Dallas, Texas M. Fite, Pacific Coast Flange, Mound House, Nev. J. Forni, Jifco Inc., Livermore, Calif. B.D. Keil, Northwest Pipe Company, Draper,

16、Utah D. Lay, Hytorc, Provo, Utah J.L. Luka, American SpiralWeld Pipe Company, Columbia, S.C. J. Olmos, Ameron Water T ransmission Group, Rancho Cucamonga, Calif. R.N. Satyarthi, Baker Coupling Company Inc., Los Angeles, Calif. D. Seals, JCM Industries, Nash, Texas C. Shelley, Victaulic, Atlanta, Ga.

17、 B.P . Simpson, American SpiralWeld Pipe Company, Birmingham, Ala. G. Tate, Viking Johnson, Hitchin, United Kingdom N. Thogersen, Romac Industries Inc., Bothell, Wash. M. Vanderbosch, CAB Inc., Nacogdoches, Texas J. Waterland, VSP Technologies, Prince George, Va. iv The AWWA Standards Committee on S

18、teel Pipe, which reviewed and approved this standard, had the following personnel at the time of approval: John H. Bambei Jr., Chair Dennis Dechant, Vice-Chair John L. Luka, Secretary General Interest Members J.H. Bambei Jr., Bambei Engineering Services, Arvada, Colo. W.R. Brunzell, Brunzell Associa

19、tes Ltd., Skokie, Ill. R.J. Card, Lockwood, Andrews (2) the fact that cast valves and fittings will always have flanges of large outside diameter, which cannot be reduced because of * American National Standards Institute, 25 West 43rd Street, Fourth Floor, New York, NY 10036. Hill, H.O., et al. 194

20、4. Fabricated Steel Ring Flanges for Water Pipe Service for Low Pressure and Low Temperatures. Journal AWWA, 36:9:968. ASME International, 3 Park Avenue, New York, NY 10016.x the wall thickness of this equipment; (3) the need for interchangeability of equipment through the use of common drilling pat

21、terns; and (4) the fact that standards could be based on the successful usage and good service records of existing installations. A survey of water utility users indicated that it was desirable to maintain the outside diameter and drilling of flanged fittings and valves given in ANSI/AWWA C500, Gate

22、 Valves for Water and Sewage Systems, and ANSI/ASME B16.1, Cast Iron Pipe Flanges and Flanged Fittings (for Classes 25, 125, 250, and 800). The committee decided to follow this practice for sizes 648 in. (1501,200 mm). In its extensive deliberations, the ASME/AWWA committee had available the results

23、 of special research and testing conducted by Armco Steel Corporation, Bethlehem Steel Company, and Taylor Forge and Pipe Works. The various design methods and test results were given in “Steel Ring Flanges for Steel Pipe,” ARMCO Bulletin 47-A (1947), from the American Rolling Mill Company, Middleto

24、wn, Ohio. The design of flanges for waterworks service, with the results of the preceding report, was published in Journal AWWA in October 1950, pp. 931944. A discussion in the paper by T aylor Forge, participants in the ASME/AWWA committee, states the reasons why a waterworks flange is not an ASME/

25、Taylor Forge flange. Concern about high secondary stresses at the attachment, e.g., thick material to thin wall pipe, is covered here along with the published “Design of Wye Branches” (Journal AWWA, June 1955, appendix C, pp. 581630). Beginning in 2006, a special flange task group investigated the d

26、evelopment history of the flange dimensions found in the standard. After 5 years of research, the task group reached the following conclusions: 1. There is no one exact stress-based design method that could reproduce the thickness values in the tables. However, it appears the ring flange thicknesses

27、 in this standard are based on using the LaTourBarnard design procedure (ARMCO Bulletin 47-A, 1947) for ring flanges, which is based on ASME integral flange design procedures. 2. A current design analysis was performed based on the LaTourBarnard proposed design method (which was based on physical te

28、sts on pipes with steel-ring flanges) that demonstrated comparable results. The original LaTourBarnard design procedure was a bending-stress design methodology. 3. It has been established that flange thickness design based solely on a stress- based design procedure is incorrect. In Barnards October

29、1950 Journal AWWA paper, he writes: “When the test results were analyzed, it became obvious that the design formulas used in establishing American Standard flange dimensions predicted xi fantastically high localized stresses even when the joint assembly performed satisfactorily. Since a method of de

30、signing by test was being sought, a reconciliation of the apparent contradictions between theory and test results had to be explored. To find the answer, attention was turned to the behavior under load of the steel being tested in pipe wall and flange. Also, the stress factors in the formulas were f

31、urther examined to discover whether or not a different concept of design would compose the apparent differences between theory and test results. It was found that theory fits the data when the concept of calculated stress level design is displaced by a concept of limiting-strain design. Then there w

32、as good correlation between theory, the test results, and past field experience and practice.” Simply put, the design of flange thickness was performed as a limiting-strain type of design procedure and not based on stress. The limiting strain was 5,000 in./in. as determined by the 0.5 percent load e

33、xtension method. 4. Many steel-ring flanges have been supplied with thicknesses and dimensions that match the tables herein since these initial investigations were performed in the 1940s and 1950s by the ASME/AWWA committees leading up to the first edition of AWWA C207. As written by Barnard in 1950

34、, “the primary aim in flange design should be to prevent joint leakage since steel flange joints do not fail by fracture.” The current flange task group has found this to be true over the past 60 years as there have been no reported occurrences of steel flanges fracturing when servicing the pressure

35、 that they were supplied to meet. 5. The determination of the steel-cylinder thickness at the flange attachment to be used in this standard is based on the design procedures for internal pressures shown in AWWA Manual M11, Steel PipeA Guide for Design and Installation. This practice is deemed accept

36、able based on empirical data of successful performance dating back to the early 1950s. Tables 2 through 5 are based on historical dimensions and are presented without additional calculations. I.B. History. The report of the ASME/AWWA committee was approved in 1951, and the first edition of this stan

37、dard, designated AWWA C207-52T, was published in 1952 under the title T entative Standard Specifications for Steel Pipe Flanges. That edition covered diameters from 6 to 48 in. (from 150 to 1,200 mm) and pressures through 150 psi (1,034 kPa). In 1954, a committee composed of T aylor Forge, Armco, Bethlehem Steel, and consulting engineers revised the existing standard to include diameters through 96 in. (2,400 mm) and pressures upto 275 psi (1,896 kPa). This

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1