ImageVerifierCode 换一换
格式:PDF , 页数:184 ,大小:4.65MB ,
资源ID:583062      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-583062.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(BS IEC 62232-2011 Determination of RF field strength and SAR in the vicinity of radiocommunication base stations for the purpose of evaluating human exposure《为评估人体受辐射程度 在无线电通信基站附近进.pdf)为本站会员(feelhesitate105)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

BS IEC 62232-2011 Determination of RF field strength and SAR in the vicinity of radiocommunication base stations for the purpose of evaluating human exposure《为评估人体受辐射程度 在无线电通信基站附近进.pdf

1、raising standards worldwideNO COPYING WITHOUT BSI PERMISSION EXCEPT AS PERMITTED BY COPYRIGHT LAWBSI Standards PublicationDetermination of RF field strength and SAR in the vicinity of radiocommunicationbase stations for the purpose of evaluating human exposureBS IEC 62232:2011National forewordThis B

2、ritish Standard is the UK implementation of IEC 62232:2011.The UK participation in its preparation was entrusted to Technical CommitteeGEL/106, Human exposure to low frequency and high frequency electromagnetic radiation.A list of organizations represented on this committee can be obtained onrequest

3、 to its secretary.This publication does not purport to include all the necessary provisions of acontract. Users are responsible for its correct application. BSI 2011ISBN 978 0 580 55621 0ICS 13.280; 17.240; 33.070.01Compliance with a British Standard cannot confer immunity fromlegal obligations.This

4、 British Standard was published under the authority of the StandardsPolicy and Strategy Committee on 31 July 2011.Amendments issued since publicationAmd. No. Date Text affectedBRITISH STANDARDBS IEC 62232:2011IEC 62232 Edition 1.0 2011-05 INTERNATIONAL STANDARD NORME INTERNATIONALE Determination of

5、RF field strength and SAR in the vicinity of radiocommunication base stations for the purpose of evaluating human exposure Dtermination des champs de radiofrquences et du DAS aux environs des stations de base utilises pour les communications radio dans le but dvaluer lexposition humaine INTERNATIONA

6、L ELECTROTECHNICAL COMMISSION COMMISSION ELECTROTECHNIQUE INTERNATIONALE XJ ICS 13.280; 17.240 PRICE CODE CODE PRIX ISBN 978-2-88912-493-0 Registered trademark of the International Electrotechnical Commission Marque dpose de la Commission Electrotechnique Internationale colourinsideBS IEC 62232:2011

7、 2 62232 IEC:2011 CONTENTS FOREWORD . 7 INTRODUCTION . 9 1 Scope . 10 2 Normative references . 11 3 Terms and definitions . 11 4 Symbols and abbreviated terms 17 4.1 Physical quantities 17 4.2 Constants 17 4.3 Abbreviations 17 5 Developing the evaluation plan . 18 5.1 Overview . 18 5.2 Key tasks 19

8、6 Evaluation methods 21 6.1 Overview . 21 6.2 Measurement methods 22 6.2.1 Overview of measurement methods . 22 6.2.2 RF field strength measurement 23 6.2.3 SAR measurement method 32 6.3 Computation methods 36 6.3.1 Overview and general requirements 36 6.3.2 Basic computation methods . 38 6.3.3 Adva

9、nced computation methods 43 6.4 Extrapolation from the evaluated SAR / RF field strength to the required assessment condition 52 6.4.1 Extrapolation method . 52 6.4.2 Extrapolation to maximum RF field strength using broadband measurements . 53 6.4.3 Extrapolation to maximum RF field strength for fre

10、quency and code selective measurements 53 6.5 Summation of multiple RF fields 54 6.5.1 Applicability . 54 6.5.2 Uncorrelated fields 54 6.5.3 Correlated fields 55 6.5.4 Ambient fields 55 7 Uncertainty . 55 7.1 Background . 55 7.2 Requirement to estimate uncertainty . 55 7.3 How to estimate uncertaint

11、y 56 7.4 Uncertainty bounds on measurement equipment influence quantities 56 7.5 Applying uncertainty for compliance assessments . 56 8 Reporting . 57 8.1 Background . 57 8.2 Evaluation report . 57 8.2.1 General . 57 8.2.2 Measurement data sheet . 57 8.2.3 Computational data sheet 58 8.2.4 Final rep

12、ort 58 BS IEC 62232:201162232 IEC:2011 3 8.3 Interpretation of results . 59 8.3.1 Comparison with limit 59 8.3.2 Comparing results . 59 8.3.3 Opinions and interpretations 59 Annex A (normative) Developing the evaluation plan . 60 Annex B (normative) Defining the source-environment plane . 69 Annex C

13、 (informative) Guidance on the application of the standard to specific evaluation purposes 78 Annex D (normative) Evaluation parameters 84 Annex E (normative) RF field strength measurement equipment requirements . 88 Annex F (informative) Basic computation implementation. 89 Annex G (normative) Adva

14、nced computation implementation . 97 Annex H (normative) Validation of computation methods 101 Annex I (informative) Guidance on spatial averaging schemes . 110 Annex J (informative) Guidance on addressing time variation of signals in measurement 112 Annex K (informative) Guidance on determining amb

15、ient field levels 113 Annex L (informative) Guidance on comparing evaluated parameters with a limit value . 117 Annex M (informative) Guidance on assessment schemes . 119 Annex N (informative) Guidance on specific technologies 127 Annex O (informative) Guidance on uncertainty . 151 Annex P (informat

16、ive) Case studies . 165 Bibliography 175 Figure 1 Overview of evaluation methods . 21 Figure 2 Overview of RF field strength measurement methods . 22 Figure 3 Positioning of the EUT relative to the relevant phantom . 33 Figure 4 Overview of computation methods 37 Figure 5 Reflection due to the prese

17、nce of a ground plane . 39 Figure 6 Enclosed cylinder around collinear arrays, with and without electrical downtilt . 40 Figure 7 Directions for which SAR estimation expressions are given 41 Figure 8 Ray tracing (synthetic model) geometry and parameters 44 Figure B.1 Source-environment plane concept

18、 . 69 Figure B.2 Geometry of an antenna with largest linear dimension Leffand largest end dimension Lend. 70 Figure B.3 Maximum path difference for an antenna with largest linear dimension L 75 Figure B.4 Example source-environment plane regions near a roof-top antenna which has a narrow vertical (e

19、levation plane) beamwidth (not to scale) . 77 Figure C.1 Example of complex compliance boundary . 79 Figure C.2 Example of circular cylindrical compliance boundaries: (a) sector coverage antenna, (b) horizontally omnidirectional antenna 79 Figure C.3 Example of parallelepipedic compliance boundary 8

20、0 Figure C.4 Example illustrating the linear scaling procedure 80 Figure C.5 Example investigation process 83 BS IEC 62232:2011 4 62232 IEC:2011 Figure D.1 Cylindrical, cartesian and spherical coordinates relative to the RBS antenna 84 Figure F.1 Reference frame employed for cylindrical formulae for

21、 field strength computation at a point P (left), and on a line perpendicular to boresight (right) . 89 Figure F.2 Two (a) and three (b) dimensional views illustrating the three valid zones for field strength computation around an antenna 90 Figure F.3 Leaky feeder geometry . 95 Figure H.1 Cylindrica

22、l formulae reference results . 101 Figure H.2 Spherical formulae reference results 102 Figure H.3 Line 4 far-field positions for ray tracing validation example . 103 Figure H.4 Antenna parameters for ray tracing algorithm validation example . 104 Figure H.5 Generic 900 MHz RBS antenna with nine dipo

23、le radiators 106 Figure H.6 Line 1, 2 and 3 near-field positions for full wave and ray tracing validation . 106 Figure H.7 Generic 1 800 MHz RBS antenna with five slot radiators 108 Figure H.8 RBS antenna placed in front of a multi-layered lossy cylinder . 109 Figure I.1 Spatial averaging schemes re

24、lative to foot support level 111 Figure I.2 Spatial averaging relative to spatial-peak field strength point height . 111 Figure K.1 Evaluation locations 115 Figure K.2 Relationship of separation of remote radio source and evaluation area to separation of evaluation points . 116 Figure M.1 Target unc

25、ertainty scheme overview 121 Figure M.2 Evaluation of compliance with limit . 122 Figure M.3 Evaluation with confidence that limit is exceeded . 123 Figure N.1 Spectral occupancy for GMSK 133 Figure N.2 Spectral occupancy for CDMA 134 Figure N.3 Channel allocation for a WCDMA signal 137 Figure N.4 E

26、xample of Wi-Fi frames . 140 Figure N.5 Channel occupation versus the integration time for 802.11b standard . 140 Figure N.6 Channel occupation versus nominal throughput rate for 802.11b/g standards 141 Figure N.7 Wi-Fi spectrum trace snapshot . 141 Figure N.8 Plan view representation of statistical

27、 conservative model 143 Figure N.9 Binomial cumulative probability function for N = 24, PR = 0,125 149 Figure N.10 Binomial cumulative probability function for N = 18, PR = 2/7 150 Figure O.1 Probability of the true value being above (respectively below) the evaluated value depending on the confiden

28、ce level assuming a normal distribution 154 Figure O.2 Plot of the calibration factors for E (not E) provided from an example calibration report for an electric field probe . 156 Figure O.3 Computational model used for the variational analysis of reflected RF fields from the front of a surveyor . 16

29、1 Figure P.1 Micro cell case study 166 Figure P.2 Roof-top case study (a) with nearby apartment buildings (b) . 167 Figure P.3 Roof-top/tower case study (a) in residential area (b) . 168 Figure P.4 Roof-top case study with direct access to antennas 169 Figure P.5 Roof-top case study with large anten

30、nas and no direct access 170 BS IEC 62232:201162232 IEC:2011 5 Figure P.6 Cylindrical compliance boundary determination for dual band antenna on building . 171 Figure P.7 Tower case study (a) in parkland (b) . 172 Figure P.8 Multiple towers case study (a) at sports venue (b) 173 Figure P.9 Office bu

31、ilding in building coverage case study . 174 Table 1 Checklist for the evaluation plan 20 Table 2 Sample template for estimating the expanded uncertainty of a RF field strength measurement that used a frequency-selective instrument 30 Table 3 Sample template for estimating the expanded uncertainty o

32、f a RF field strength measurement that used a broadband instrument . 31 Table 4 Applicability of computation methods for source-environment regions of Figure B.1 . 38 Table 5 Applicability of SAR estimation formulae . 42 Table 6 Sample template for estimating the expanded uncertainty of a ray tracin

33、g RF field strength computation . 46 Table 7 Sample template for estimating the expanded uncertainty of a full wave RF field strength computation . 49 Table 8 Sample template for estimating the expanded uncertainty of a full wave SAR computation 51 Table A.1 Measurand validity for evaluation points

34、in each source region 62 Table A.2 Guidance on selecting between computation and measurement approaches . 63 Table A.3 Selecting in situ or laboratory measurement from evaluation purpose and RBS category . 64 Table A.4 Guidance on selecting between broadband and frequency-selective measurement 65 Ta

35、ble A.5 Guidance on selecting RF field strength measurement procedures 66 Table A.6 Guidance on selecting computation methods . 67 Table A.7 Guidance on specific evaluation method ranking 68 Table B.1 Definition of source regions 71 Table B.2 Default source region boundaries . 71 Table B.3 Source re

36、gion boundaries for antennas with maximum dimension less than 2,5 72 Table B.4 Source region boundaries for linear/planar antenna arrays with a maximum dimension greater than or equal to 2,5 . 72 Table B.5 Source region boundaries for equiphase radiation aperture (e.g. dish) antennas with maximum re

37、flector dimension much greater than a wavelength 73 Table B.6 Source region boundaries for leaky feeders . 73 Table B.7 Far-field distance r measured in metres as a function of angle 75 Table D.1 Dimension variables 85 Table D.2 RF power variables 85 Table D.3 Antenna variables 86 Table D.4 Measuran

38、d variables 87 Table E.1 Broadband measurement system requirements 88 Table E.2 Frequency-selective measurement system requirements 88 Table F.1 Definition of boundaries for selecting the zone of computation . 91 BS IEC 62232:2011 6 62232 IEC:2011 Table F.2 Definition of )( fC . 93 Table H.1 Input p

39、arameters for cylinder and spherical formulae validation . 101 Table H.2 Input parameters for SAR estimation formulae validation . 102 Table H.3 SAR10gand SARwbestimation formulae reference results for Table H.2 parameters . 102 Table H.4 Ray tracing power density reference results . 105 Table H.5 V

40、alidation 1 full wave field reference results 107 Table H.6 Validation 2 full wave field reference results 108 Table H.7 Validation reference SAR results for computation method 109 Table M.1 Examples of general assessment schemes 120 Table M.2 Determining target uncertainty . 122 Table M.3 Monte Car

41、lo simulation of 10 000 trials both surveyor and auditor using best estimate 125 Table M.4 Monte Carlo simulation of 10 000 trials both surveyor and auditor using target uncertainty of 4 dB 125 Table M.5 Monte Carlo simulation of 10 000 trials surveyor uses upper 95 % CI vs. auditor uses lower 95 %

42、CI . 126 Table N.1 Technology specific information . 128 Table N.2 Example of spectrum analyser settings for an integration per service. 135 Table N.3 Example constant power components for specific technologies 136 Table N.4 CDMA decoder requirements . 137 Table N.5 Signals configuration . 138 Table

43、 N.6 CDMA generator setting for power linearity 138 Table N.7 WCDMA generator setting for decoder calibration 139 Table N.8 CDMA generator setting for reflection coefficient measurement . 139 Table O.1 Guidance on minimum separation distances for some dipole lengths to ensure that the uncertainty do

44、es not exceed 5 % or 10 % in a measurement of E. 159 Table O.2 Guidance on minimum separation distances for some loop diameters to ensure that the uncertainty does not exceed 5 % or 10 % in a measurement of H. 160 Table O.3 Example minimum separation conditions for selected dipole lengths for 10 % u

45、ncertainty in E 160 Table O.4 Standard estimates of dB variation for the perturbations in front of a surveyor due to body reflected fields as described in Figure O.3 . 162 Table O.5 Standard uncertainty (u) estimates for E and H due to body reflections from the surveyor for common radio services der

46、ived from estimates provided in Table O.4 162 BS IEC 62232:201162232 IEC:2011 7 INTERNATIONAL ELECTROTECHNICAL COMMISSION _ DETERMINATION OF RF FIELD STRENGTH AND SAR IN THE VICINITY OF RADIOCOMMUNICATION BASE STATIONS FOR THE PURPOSE OF EVALUATING HUMAN EXPOSURE FOREWORD 1) The International Electr

47、otechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committees). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. T

48、o this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organizations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardi

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1