ImageVerifierCode 换一换
格式:PDF , 页数:22 ,大小:707.94KB ,
资源ID:583515      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-583515.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(BS ISO 11271-2002 Soil quality - Determination of redox potential - Field method《土质 氧化还原反应潜在力的测定 现场法》.pdf)为本站会员(dealItalian200)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

BS ISO 11271-2002 Soil quality - Determination of redox potential - Field method《土质 氧化还原反应潜在力的测定 现场法》.pdf

1、BRITISH STANDARD BS ISO 11271:2002 BS 7755.3.14:2002 Soil quality Determination of redox potential Field method ICS 13.080.20 BS ISO 11271:2002 This British Standard, having been prepared under the direction of the Health and Environment Sector Policy and Strategy Committee, was published under the

2、authority of the Standards Policy and Strategy Committee on 4 November 2002 BSI 4 November 2002 ISBN 0 580 40677 6 National foreword This British Standard reproduces verbatim ISO 11271:2002 and implements it as the UK national standard. The UK participation in its preparation was entrusted by Techni

3、cal Committee EH/4, Soil quality, to Subcommittee EH/4/3, Chemical methods and soil characteristics, which has the responsibility to: A list of organizations represented on this subcommittee can be obtained on request to its secretary. Cross-references The British Standards which implement internati

4、onal publications referred to in this document may be found in the BSI Catalogue under the section entitled “International Standards Correspondence Index”, or by using the “Search” facility of the BSI Electronic Catalogue or of British Standards Online. This publication does not purport to include a

5、ll the necessary provisions of a contract. Users are responsible for its correct application. Compliance with a British Standard does not of itself confer immunity from legal obligations. aid enquirers to understand the text; present to the responsible international/European committee any enquiries

6、on the interpretation, or proposals for change, and keep the UK interests informed; monitor related international and European developments and promulgate them in the UK. Summary of pages This document comprises a front cover, an inside front cover, the ISO title page, pages ii to v, a blank page, p

7、ages 1 to 12, an inside back cover and a back cover. The BSI copyright date displayed in this document indicates when the document was last issued. Amendments issued since publication Amd. No. Date CommentsINTERNATIONAL STANDARD ISO 11271 First edition 2002-10-01 Reference number ISO 11271:2002(E) S

8、oil quality Determination of redox potential Field method Qualit du sol Dtermination du potentiel doxydorduction Mthode de terrainBSISO11271:2002BSISO11271:2002iiISO 72112002:1)E( ISO 2002 r llAithgs reservde iii Contents Page 1 Scope . 1 2 Normative reference . 1 3 Term and definition . 1 4 Princip

9、le 1 5 Apparatus . 2 6 Reagents 3 7 Site selection and sampling 3 8 Procedure . 3 9 Evaluation . 4 10 Expression of results 4 11 Test report 4 Annexes A Description of the construction of redox electrodes, of the salt bridge, and their arrangement during measurement 5 B Potentials of platinum electr

10、odes in different solutions . 9 C Potentials of reference electrodes. 10 D Soil moisture status. 11 Bibliography. 12 BSISO11271:2002iiiISO :17211(2002)E vi ISO 2002 Ar llithgr seresvde Foreword ISO (the International Organization for Standardization) is a worldwide federation of national standards b

11、odies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizati

12、ons, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. International Standards are drafted in accordance with the rules given in the

13、 ISO/IEC Directives, Part 3. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. Attention is drawn to the possibility that s

14、ome of the elements of this International Standard may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. International Standard ISO 11271 was prepared by Technical Committee ISO/TC 190, Soil quality, Subcommittee SC 3, Chemical methods

15、and soil characteristics. Annexes A, B, C and D of this International Standard are for information only. BSISO11271:2002ivISO 72112002:1)E( ISO 2002 r llAithgs reservde v Introduction The redox potential is a physicochemical parameter used to characterize soil aeration status in a global way. Under

16、field conditions, it gives information on the condition of oxidation or reduction of those compounds which, depending on the case, play an important part in plant nutrition, can induce toxicity phenomena or intervene in gas transfer to the atmosphere (greenhouse effect). It can also be used to a cer

17、tain extent to follow soil performances in case of sludge disposal or composting, and to adjust applications accordingly. Under laboratory conditions, it can be used in order to study oxygen diffusion phenomena to aggregate level. BSISO11271:2002vANRETNIITOTS LANDNADRA ISO 72112002:1)E( ISO 2002 r l

18、lAithgs reservde 1 Soil quality Determination of redox potential Field method 1 Scope This International Standard specifies a field method for the determination of soil redox potential ( ). NOTE The electrochemical measurement of redox potential described here is possible only if the relevant soil h

19、orizon has a moisture status defined as fresh or wetter according to the classes presented in annex D. 2 Normative reference The following normative document contains provisions which, through reference in this text, constitute provisions of this International Standard. For dated references, subsequ

20、ent amendments to, or revisions of, this publication do not apply. However, parties to agreements based on this International Standard are encouraged to investigate the possibility of applying the most recent edition of the normative document indicated below. For undated references, the latest editi

21、on of the normative document referred to applies. Members of ISO and IEC maintain registers of currently valid International Standards. ISO 3696:1987, Water for analytical laboratory use Specification and test methods 3 Term and definition For the purposes of this International Standard, the followi

22、ng term and definition apply. 3.1 redox potential electrochemical potential reflecting the oxidation-reduction status of a liquid chemical system (in this case of the soil solution) 4 Principle Redox potential is an electrochemical equivalent of the free energy of redox reactions, and for an equilib

23、riated single redox system of the general form: (1) is given by the Nernst equation: (2) whereand are the activities of the oxidized and reduced forms of the element, respectively; refers to the electron(s) involved in the reaction; refers to the proton(s) involved in the reaction; E h E h A ox +ne

24、+mH + A red E h =E 0 + RT nF ln A ox A red 2,303mRT nF pH A ox A red e H + BSISO11271:20021ISO :17211(2002)E 2 ISO 2002 Ar llithgr seresvdeand are the numbers of electrons and protons involved in the reaction, respectively; is the standard value of the potential, i.e. when and ; is the universal gas

25、 constant ( ); is the absolute temperature; is the Faraday constant ( ); is the natural log of 10. Redox potential is related to electron activity ( ) in the system as follows: (3) NOTE Users of this International Standard unfamiliar with these electrochemical concepts should consult appropriate tex

26、ts, or seek professional advice. The electrometric determination of redox potential is analogous to the determination of pH. The determination of follows the principle of measuring potential differences between an inert measuring electrode (usually a platinum electrode), i.e. an electrode not reacti

27、ng with the solution per se, with respect to the standard hydrogen electrode used as the reference electrode. Many redox systems are involved in the soil solution, and the resulting potential is a mixed potential depending on the existing electroactive redox couples. For practical reasons, a silver-

28、silver chloride electrode is usually used as the reference electrode, the potential of which is added to the measured potential difference (see annex C) in order to obtain the values expressed on the basis of the standard hydrogen electrode. 5 Apparatus 5.1 Millivoltmeter, with an input resistance n

29、ot less than and sensitivity of . 5.2 A set of redox-electrodes, constructed as in A.1. All electrodes should be sufficiently robust for field use. 5.3 Reference electrode: silver/silver chloride reference electrode in or potassium chloride solution. Other reference electrodes such as the calomel el

30、ectrode can also be used, but are not recommended because of the health hazard connected with the use of mercury. The potential of such reference electrodes with respect to the standard hydrogen electrode is given in annex B. Reference electrodes should be stored in a potassium chloride solution (6.

31、4) of the same concentration as that present in the electrode, or directly in the salt bridge (5.5) containing the same concentration of potassium chloride. It should be noted that lower concentrations of potassium chloride will reduce contamination of the soil with this salt. 5.4 Rigid rod, (stainl

32、ess steel has been found suitable), to in length, with a diameter greater than that of the redox electrodes (5.2). The rod shall have a length which allows the redox electrodes to be inserted to the desired depth in the soil. 5.5 Salt bridge, to connect the reference electrode with the soil (see A.2

33、). 5.6 Hand auger, with a diameter to greater than that of the salt bridge. 5.7 Electrode cleaning materials: finest grade of steel wool, scouring powder and some cotton cloth have been found suitable. nm E 0 A ox =A red pH= 0 R 8,314 1 J mol 1 K 1 T F 96 500 C mol 1 2,303 e E h = RT F ln e E h 10 G

34、 1mV 1 mol/l 3 mol/l 20 cm 100 cm 2 mm 3mm 5mm BSISO11271:20022ISO 72112002:1)E( ISO 2002 r llAithgs reservde 3 5.8 Thermometer, to measure the temperature at the location of the reference electrode (see clause 8) with an accuracy of . 6R e a g e n t s 6.1 Redox buffer solution, to calibrate the red

35、ox electrodes. Use either buffered quinhydrone solution (prepared by adding quinhydrone to a pH buffer to obtain a suspension), or an equimolar solution of potassium hexacyanoferrate(III) and potassium hexacyanoferrate(II) (see annex B). 6.2 Water, conforming to grade 2 of ISO 3696. 6.3 Agar, , in a

36、 potassium chloride solution of the same concentration as that in the reference electrode. 6.4 Potassium chloride solution, of the same concentration as that chosen in 5.3. NOTE This solution is used to store the reference electrode and to add to the salt bridge, as needed. 7 Site selection and samp

37、ling The selection and description of the place of measurement, and of samples for laboratory measurement, should follow the guidelines given in ISO 10381-1: and ISO 11464. 8 Procedure 8.1 Care, cleaning and testing of the redox electrode system The platinum electrodes shall be stored in air and kep

38、t clean. They shall be inspected for damage and/or contamination at intervals of not more than one year, and every time they are used. Oils, fats and waxes, and other chemicals likely to adhere are particularly damaging to electrode performance. If contaminated with soil material they shall be clean

39、ed gently with a cotton cloth, and rinsed with distilled water. In cases of severe contamination, e.g. with oils, etc. (above), an appropriate solvent followed by scouring material (5.7) shall be used (see Note below). The reference electrode(s) shall also be inspected at the same time as the platin

40、um electrode(s). Any visible change in the colour or transparency of the potassium chloride electrolyte solution indicates probable trouble. In such cases the reference electrode shall not be used. Crystals of potassium chloride are, however, a normal feature of saturated potassium chloride solution

41、s, and are no reason to reject the electrode in question. The electrodes shall be checked prior to each series of measurements, by determining their response in the redox buffer solution (6.1). The measured redox potential values shall be as given in annex B. Any electrode differing by more than fro

42、m the required value shall be cleaned and tested again, and discarded if cleaning fails to correct the problem. NOTE Experience has shown that the use of strong oxidizing agents, e.g. nitric acid or hydrogen peroxide solution, as cleaning agents for platinum electrodes can result in high redox poten

43、tials. The use of such agents is therefore not recommended. In practical terms, the reference electrode potentials can be checked against each other. An electrode which gives a reading differing by more than from the other(s) is likely to be faulty, and should be discarded. This check procedure requ

44、ires a minimum of three reference electrodes, connected in turn. Reference electrodes can be checked in absolute terms only against a standard hydrogen electrode. This can be done only in specialist laboratories. It is usually more convenient to buy electrodes only from a reputable source. 1 C = 0,5

45、 % 10 mV 10 mV BSISO11271:20023ISO :17211(2002)E 4 ISO 2002 Ar llithgr seresvde 8.2 Preparation of site and measurement of redox potential At the place of measurement, drive a hole into the soil using the rigid rod (5.4) to a depth to less than the desired measurement depth. Immediately insert the r

46、edox electrode into the hole to a depth deeper by to than that of the hole. At least two electrodes should be installed for each measurement depth. Leave the platinum electrodes in the soil for at least following installation before connecting them to the millivoltmeter. At a distance of to from the

47、 redox electrode, auger a hole down to a fresh (or wetter) soil layer (see annex D), and install the salt bridge so as to obtain good contact between the ceramic cup of the salt bridge and the soil. Measure the potential difference, , in millivolts between the platinum electrode and the reference el

48、ectrode after , using the millivoltmeter (5.1). The measurement period can be shorter (but not ) only if the difference between successive measurements at intervals is . Measure the temperature (5.8) at the location of the reference electrode at the time of measurement of the potential difference, .

49、 It is recommended that the platinum electrode be disconnected from the millivoltmeter between readings. Potassium chloride can leak from the salt bridge and reach significant amounts after about . If this is undesirable, then the salt bridge should be removed from the soil and re-installed prior to each set of measurements. Protect the reference electrode from direct heating by the sun. Keep in mind that the temperature

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1