ImageVerifierCode 换一换
格式:PDF , 页数:20 ,大小:1.18MB ,
资源ID:588986      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-588986.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(BS PD IEC TS 62607-5-1-2014 Nanomanufacturing Key control characteristics Thin-film organic nano electronic devices Carrier transport measurements《纳米制造 关键控制特性 有机薄膜 纳米电子器件 载波传输测量》.pdf)为本站会员(tireattitude366)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

BS PD IEC TS 62607-5-1-2014 Nanomanufacturing Key control characteristics Thin-film organic nano electronic devices Carrier transport measurements《纳米制造 关键控制特性 有机薄膜 纳米电子器件 载波传输测量》.pdf

1、BSI Standards PublicationNanomanufacturing Key control characteristicsPart 5-1: Thin-film organic/nano electronic devices Carrier transport measurementsPD IEC/TS 62607-5-1:2014National forewordThis Published Document is the UK implementation of IEC/TS 62607-5-1:2014.The UK participation in its prepa

2、ration was entrusted to TechnicalCommittee NTI/1, Nanotechnologies.A list of organizations represented on this committee can be obtained onrequest to its secretary.This publication does not purport to include all the necessary provisions of a contract. Users are responsible for its correct applicati

3、on. The British Standards Institution 2014.Published by BSI Standards Limited 2014ISBN 978 0 580 82584 2ICS 07.030Compliance with a British Standard cannot confer immunity fromlegal obligations.This Published Document was published under the authority of theStandards Policy and Strategy Committee on

4、 31 December 2014.Amendments issued since publicationDate Text affectedPUBLISHED DOCUMENTPD IEC/TS 62607-5-1:2014IEC TS 62607-5-1 Edition 1.0 2014-09 TECHNICAL SPECIFICATION Nanomanufacturing Key control characteristics Part 5-1: Thin-film organic/nano electronic devices Carrier transport measuremen

5、ts INTERNATIONAL ELECTROTECHNICAL COMMISSION P ICS 07.030 PRICE CODE ISBN 978-2-8322-1812-9 Registered trademark of the International Electrotechnical Commission Warning! Make sure that you obtained this publication from an authorized distributor. colourinsidePD IEC/TS 62607-5-1:2014 2 IEC TS 62607-

6、5-1:2014 IEC 2014 CONTENTS FOREWORD . 3 INTRODUCTION . 5 1 Scope 6 2 Normative references 6 3 Terms, definitions and abbreviations 6 3.1 Terms and definitions 6 3.2 Symbols and abbreviated terms 7 4 Sample structures of OTFTs 8 4.1 Typical device structures of OTFTs . 8 4.2 Contact-area-limited dopi

7、ng in OTFTs . 8 5 Appropriate data format . 9 Annex A (informative) Experimental studies on contact-area-limited doping in OTFTs 11 A.1 Contact-area-limited doping in bottom-gate, top-contact OTFTs 11 A.2 Contact-area-limited doping in bottom-gate, bottom-contact OTFTs 13 Bibliography 15 Figure 1 Ty

8、pical device structures of OTFTs 8 Figure 2 Contact-area-limited doping in OTFTs 9 Figure 3 Summary of this Technical Specification 9 Figure A.1 Sample preparation of bottom-gate, top-contact (BGTC) pentacene OTFTs using contact-area-limited doping 12 Figure A.2 Contact-area-limited doping effect in

9、 bottom-gate, top-contact (BGTC) pentacene OTFTs . 12 Figure A.3 Sample preparation of bottom-gate, bottom-contact (BGBC) p-channel OTFTs using contact-area-limited doping 13 Figure A.4 Contact-area-limited doping effect in bottom-gate, bottom-contact (BGBC) pentacene OTFTs 14 Figure A.5 Contact-are

10、a-limited doping effect in bottom-gate, bottom-contact (BGBC) oligothiophene OTFTs . 14 Table 1 Possible data format to be given together with carrier transport properties of OTFTs 10 PD IEC/TS 62607-5-1:2014IEC TS 62607-5-1:2014 IEC 2014 3 INTERNATIONAL ELECTROTECHNICAL COMMISSION _ NANOMANUFACTURI

11、NG KEY CONTROL CHARACTERISTICS Part 5-1: Thin-film organic/nano electronic devices Carrier transport measurements FOREWORD 1) The International Electrotechnical Commission (IEC) is a worldwide organization for standardization comprising all national electrotechnical committees (IEC National Committe

12、es). The object of IEC is to promote international co-operation on all questions concerning standardization in the electrical and electronic fields. To this end and in addition to other activities, IEC publishes International Standards, Technical Specifications, Technical Reports, Publicly Available

13、 Specifications (PAS) and Guides (hereafter referred to as “IEC Publication(s)”). Their preparation is entrusted to technical committees; any IEC National Committee interested in the subject dealt with may participate in this preparatory work. International, governmental and non-governmental organiz

14、ations liaising with the IEC also participate in this preparation. IEC collaborates closely with the International Organization for Standardization (ISO) in accordance with conditions determined by agreement between the two organizations. 2) The formal decisions or agreements of IEC on technical mat

15、ters express, as nearly as possible, an international consensus of opinion on the relevant subjects since each technical committee has representation from all interested IEC National Committees. 3) IEC Publications have the form of recommendations for international use and are accepted by IEC Nation

16、al Committees in that sense. While all reasonable efforts are made to ensure that the technical content of IEC Publications is accurate, IEC cannot be held responsible for the way in which they are used or for any misinterpretation by any end user. 4) In order to promote international uniformity, IE

17、C National Committees undertake to apply IEC Publications transparently to the maximum extent possible in their national and regional publications. Any divergence between any IEC Publication and the corresponding national or regional publication shall be clearly indicated in the latter. 5) IEC itsel

18、f does not provide any attestation of conformity. Independent certification bodies provide conformity assessment services and, in some areas, access to IEC marks of conformity. IEC is not responsible for any services carried out by independent certification bodies. 6) All users should ensure that th

19、ey have the latest edition of this publication. 7) No liability shall attach to IEC or its directors, employees, servants or agents including individual experts and members of its technical committees and IEC National Committees for any personal injury, property damage or other damage of any nature

20、whatsoever, whether direct or indirect, or for costs (including legal fees) and expenses arising out of the publication, use of, or reliance upon, this IEC Publication or any other IEC Publications. 8) Attention is drawn to the Normative references cited in this publication. Use of the referenced pu

21、blications is indispensable for the correct application of this publication. 9) Attention is drawn to the possibility that some of the elements of this IEC Publication may be the subject of patent rights. IEC shall not be held responsible for identifying any or all such patent rights. The main task

22、of IEC technical committees is to prepare International Standards. In exceptional circumstances, a technical committee may propose the publication of a technical specification when the required support cannot be obtained for the publication of an International Standard, despite repeated efforts, or

23、the subject is still under technical development or where, for any other reason, there is the future but no immediate possibility of an agreement on an International Standard. Technical specifications are subject to review within three years of publication to decide whether they can be transformed i

24、nto International Standards. IEC TS 62607-5-1, which is a technical specification, has been prepared by IEC technical committee 113: Nanotechnology standardization for electrical and electronic products and systems. PD IEC/TS 62607-5-1:2014 4 IEC TS 62607-5-1:2014 IEC 2014 The text of this technical

25、 specification is based on the following documents: Enquiry draft Report on voting 113/212/DTS 113/221/RVC Full information on the voting for the approval of this technical specification can be found in the report on voting indicated in the above table. This publication has been drafted in accordanc

26、e with the ISO/IEC Directives, Part 2. A list of all parts in the IEC 62607 series, published under the general title Nanomanufacturing key control characteristics, can be found on the IEC website. The committee has decided that the contents of this publication will remain unchanged until the stabil

27、ity date indicated on the IEC web site under “http:/webstore.iec.ch“ in the data related to the specific publication. At this date, the publication will be transformed into an International standard, reconfirmed, withdrawn, replaced by a revised edition, or amended. IMPORTANT The colour inside logo

28、on the cover page of this publication indicates that it contains colours which are considered to be useful for the correct understanding of its contents. Users should therefore print this document using a colour printer. A bilingual version of this publication may be issued at a later date. PD IEC/T

29、S 62607-5-1:2014IEC TS 62607-5-1:2014 IEC 2014 5 INTRODUCTION Organic/nano thin-film devices have many attractive features such as being light-weight and flexible, and having a low-cost, low-temperature fabrication process. Organic/nano electronic devices have been widely researched by academic inst

30、itutions, research institutes, and materials and device industries. One of their possible applications is therefore expected to be in flexible and rollable devices. Many thin-film transistors based on organic semiconductor materials, called organic thin-film transistors (OTFTs), are expected to be m

31、ounted on organic electroluminescence display to drive each organic light-emitting diode pixel circuit. These OTFTs are also promising candidates for molecular nanoelectronics. OTFTs show a relatively smaller carrier mobility (thin-film mobility: at most 10 cm2/Vs, but usually less than 1 cm2/Vs) co

32、mpared with other thin-film transistors based on inorganic semiconductors (silicon, III-V compounds, metal oxides). Carrier transport properties such as thin-film mobility and thin-film carrier concentration in OTFTs are usually measured by simply applying the device physics of silicon metal-oxide-s

33、emiconductor transistors to OTFTs. Both the intrinsic bulk mobility of organic semiconductors and extrinsic effects such as contact resistance, carrier trap, interface, and surface state can limit thin-film mobility in OTFTs. Therefore, reliable methods of evaluating carrier transport properties for

34、 nanometer-scale thin-film materials have not yet been established and urgently need to be developed. PD IEC/TS 62607-5-1:2014 6 IEC TS 62607-5-1:2014 IEC 2014 NANOMANUFACTURING KEY CONTROL CHARACTERISTICS Part 5-1: Thin-film organic/nano electronic devices Carrier transport measurements 1 Scope Thi

35、s part of IEC 62607, which is a Technical Specification, provides a standardized sample structure for characterizing charge transport properties in thin-film organic/nano electronic devices and a format to report details of the structure which shall be provided with the measurement results. The stan

36、dardized OTFT testing structure with a contact-area-limited doping can mitigate contact resistance and enable reliable measurement of the charge carrier mobility. The purpose of this Technical Specification is to provide test sample structures for determining the intrinsic charge transport propertie

37、s of organic thin-film devices. The intention is to provide reliable materials information for OTFTs and to set guidelines for making test sample structures so that materials information is clear and consistent throughout the research community and industry. 2 Normative references The following docu

38、ments, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. IEC 60050 (all parts), In

39、ternational Electrotechnical Vocabulary (available at http:/www.electropedia.org/) IEC 62860, Test methods for the characterization of organic transistors and materials 3 Terms, definitions and abbreviations For the purposes of this document, the terms and definitions given in IEC 60050-521 as well

40、as the following apply. 3.1 Terms and definitions 3.1.1 organic thin-film transistor OTFT field-effect transistor that has a conduction channel made of thin films consisting of organic compounds 3.1.2 thin-film mobility charge carrier mobility of the conduction channel (the semiconductor layer) in a

41、n OTFT 3.1.3 contact-area-limited doping doping at around interface regions between the source and drain electrodes and the conduction channel in an OTFT PD IEC/TS 62607-5-1:2014IEC TS 62607-5-1:2014 IEC 2014 7 3.1.4 channel resistance electrical resistance which comes from the conduction channel in

42、duced by applying gate voltages in a field-effect transistor 3.1.5 contact resistance electrical resistance obtained by subtracting the channel resistance from the total electrical resistance between the source and drain electrodes in a field-effect transistor Note 1 to entry: Main components of the

43、 contact resistance are electrical leads and carrier injection barriers at the interface between the source electrode and the semiconductor layer. 3.1.6 bottom-gate, bottom-contact device field-effect transistor with the following structures: the gate electrode is located between the gate dielectric

44、 and the substrate; the source and drain electrodes are located directly on top of the substrate, and adjacent to the conduction channel-gate dielectric interface 3.1.7 bottom-gate, top-contact device field-effect transistor with the following structures: the gate electrode is located between the ga

45、te dielectric and the substrate; the source and drain electrodes are located on top of the semiconductor layer 3.1.8 top-gate, bottom-contact device field-effect transistor with the following structures: the gate electrode is located farthest away from the substrate; the gate dielectric is located b

46、etween the gate electrode and the semiconductor layer; the source and drain electrodes are located directly on top of the substrate, and adjacent to the conduction channel-gate dielectric interface 3.1.9 top-gate, top-contact device field-effect transistor with the following structures: the gate ele

47、ctrode is located farthest away from the substrate; the gate dielectric is located between the gate electrode and the semiconductor layer; the source and drain electrodes are located on top of the semiconductor layer 3.2 Symbols and abbreviated terms OTFT organic thin-film transistor BGBC bottom-gat

48、e, bottom-contact BGTC bottom-gate, top-contact TGBC top-gate, bottom-contact TGTC top-gate, top-contact F4TCNQ 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane PD IEC/TS 62607-5-1:2014 8 IEC TS 62607-5-1:2014 IEC 2014 4 Sample structures of OTFTs 4.1 Typical device structures of OTFTs Several d

49、ifferent device structures on OTFTs are possible, depending on the position of the source-drain and gate electrodes. Figure 1 illustrates two typical device structures: a bottom-gate, top-contact (BGTC) structure and a bottom-gate, bottom-contact (BGBC) structure. BGTC devices usually show better performance in comparison with BGBC devices. In comparison, the BGBC structure is more suitable for high-density device integration. However, high contact re

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1