ImageVerifierCode 换一换
格式:PDF , 页数:52 ,大小:1.32MB ,
资源ID:592698      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-592698.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(CEN TS 16800-2015 Guideline for the validation of physico-chemical analytical methods《物理化学分析方法验证指南》.pdf)为本站会员(arrownail386)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

CEN TS 16800-2015 Guideline for the validation of physico-chemical analytical methods《物理化学分析方法验证指南》.pdf

1、BSI Standards PublicationPD CEN/TS 16800:2015Guideline for the validation of physico-chemical analytical methodsPD CEN/TS 16800:2015 BRITISH STANDARDNational forewordThis British Standard is the UK implementation of CEN/TS 16800:2015. The UK participation in its preparation was entrusted to Technica

2、lCommittee EH/3/2, Water analysis.A list of organizations represented on this committee can be obtained on request to its secretary.This publication does not purport to include all the necessary provi-sions of a contract. Users are responsible for its correct application. The British Standards Insti

3、tution 2015.Published by BSI Standards Limited 2015ISBN 978 0 580 87777 3 ICS 13.060.50 Compliance with a British Standard cannot confer immunity from legal obligations.This British Standard was published under the authority of the Standards Policy and Strategy Committee on 31 December 2015.Amendmen

4、ts/corrigenda issued since publicationDate Text affectedTECHNICAL SPECIFICATION SPCIFICATION TECHNIQUE TECHNISCHE SPEZIFIKATION CEN/TS 16800 December 2015 ICS 13.060.50 English Version Guideline for the validation of physico-chemical analytical methods Lignes directrices pour la validation des mthod

5、es danalyse physico-chimiques Anleitung zur Validierung physikalisch-chemischer Analysenverfahren This Technical Specification (CEN/TS) was approved by CEN on 14 March 2015 for provisional application. The period of validity of this CEN/TS is limited initially to three years. After two years the mem

6、bers of CEN will be requested to submit their comments, particularly on the question whether the CEN/TS can be converted into a European Standard. CEN members are required to announce the existence of this CEN/TS in the same way as for an EN and to make the CEN/TS available promptly at national leve

7、l in an appropriate form. It is permissible to keep conflicting national standards in force (in parallel to the CEN/TS) until the final decision about the possible conversion of the CEN/TS into an EN is reached. CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cy

8、prus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and United K

9、ingdom. EUROPEAN COMMITTEE FOR STANDARDIZATION COMIT EUROPEN DE NORMALISATION EUROPISCHES KOMITEE FR NORMUNG CEN-CENELEC Management Centre: Avenue Marnix 17, B-1000 Brussels 2015 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members. Ref. No. CEN/TS

10、16800:2015 EPD CEN/TS 16800:2015 CEN/TS 16800:2015 (E) 2 Contents PageEuropean foreword . 4 Introduction 5 1 Scope 6 2 Normative references 6 3 Terms and definitions . 6 4 Concept 13 4.1 The concept of two validation levels . 13 4.2 First level - Validation 1 (V1) . 13 4.3 Second level - Validation

11、2 (V2) 13 4.4 Method validation using a modular approach . 13 4.4.1 Validation modules 13 4.4.2 Module A: Test method definition, documentation and general requirements 13 4.4.3 Module B: Applicability domain and pre-validation . 14 4.4.4 Module C: Intra-laboratory performance 14 4.4.5 Module D: Int

12、er-laboratory performance . 14 4.5 Method classification 15 5 Documentation of the validation process . 16 6 Validation 1 (V1): Intra-Laboratory Validation 17 6.1 General . 17 6.2 Module A: Test method definition, documentation and general requirements 17 6.3 Module B: Applicability domain and pre-v

13、alidation . 18 6.4 Module C: Intra-laboratory performance 18 6.4.1 General . 18 6.4.2 Bias 18 6.4.3 Precision 19 6.4.4 Calibration data and function 20 6.4.5 Limits and application range . 21 6.4.6 Selectivity 22 6.4.7 Robustness 23 6.4.8 Measurement uncertainty 23 7 Validation 2 (V2): Inter-Laborat

14、ory Validation 23 7.1 General . 23 7.2 Method definition and description 24 7.3 Module C: Intra-laboratory performance 24 7.4 Module D: Inter-laboratory performance . 24 7.4.1 General . 24 7.4.2 General set-up of the inter-laboratory study . 25 7.4.3 The inter-laboratory study . 26 7.4.4 Statistical

15、 analysis and calculation of the results . 27 7.4.5 Evaluation of the fitness for purpose 28 7.5 Documentation, publication and standardization . 31 Annex A (normative) Module A: Test method definition, documentation and general requirements . 32 PD CEN/TS 16800:2015 CEN/TS 16800:2015 (E) 3 Annex B

16、(normative) Module B: Applicability domain and pre-validation 34 Annex C (normative) Module C: Intra-laboratory performance . 35 Annex D (normative) Module D: Requirements for an inter-laboratory validation study . 37 Annex E (informative) Structure and content of the documentation for a validation

17、study (V2) 39 Annex F (informative) Robustness testing by systematic variation of influencing factors 44 Bibliography . 46 PD CEN/TS 16800:2015 CEN/TS 16800:2015 (E) 4 European foreword This document (CEN/TS 16800:2015) has been prepared by Technical Committee CEN/TC 230 “Water analysis”, the secret

18、ariat of which is held by DIN. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN and/or CENELEC shall not be held responsible for identifying any or all such patent rights. According to the CEN-CENELEC Internal Regulations, the

19、national standards organizations of the following countries are bound to announce this Technical Specification: Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Former Yugoslav Republic of Macedonia, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, La

20、tvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey and the United Kingdom. PD CEN/TS 16800:2015 CEN/TS 16800:2015 (E) 5 Introduction Environmental monitoring of chemical substances is increasingly carried out wit

21、hin a European framework, and there is concern about the comparability of data at the European level. In particular methods used for the monitoring of substances with recent interest have often not been properly validated either in-house (i.e. within a single laboratory) or at the international leve

22、l. These issues may be addressed by adopting a harmonized approach towards method development and validation. The main objective of this document is to provide a common European approach to the validation of chemical methods for the respective monitoring of chemical substances in a broad range of ma

23、trices. Although the development of this approach was triggered by the needs for monitoring of emerging pollutants, it is of general nature and can be applied to the measurement of a wide range of substances in a variety of matrices. This guidance takes into account the different requirements for th

24、e level of method maturity and validation at different stages of the investigation or regulation of chemical substances. In the case of a specific monitoring task, this protocol will guide the user through the following steps: classification of existing methods with respect to their status of valida

25、tion, and the selection of the appropriate validation approach; development of a method so as to extend its application; for example, if a method for determining a required target compound in a particular matrix is available, but is not suitable for the same compound in a different matrix of interes

26、t; the validation procedures to be carried out in order to effectively demonstrate the validation status of a selected method according to the two approaches adopted. Many (national and international) standards currently contain in their scope a statement like “this method is applicable from a conce

27、ntration level of xx g/l or yy mg/kg dry matter”, without any statement how this concentration level was established. When the limit of quantification (LOQ) is evaluated using the procedure of this Technical Specification, there is a possibility that it does not meet the lower limit of the claimed r

28、ange. PD CEN/TS 16800:2015 CEN/TS 16800:2015 (E) 6 1 Scope This Technical Specification describes an approach for the validation of physico-chemical analytical methods for environmental matrices. The guidance in this document addresses two different validation approaches, in increasing order of comp

29、lexity. These are: a) method development and validation at the level of single laboratories (intra-laboratory validation);b) method validation at the level of several laboratories (between-laboratory or inter-laboratoryvalidation), with a focus on methods that are sufficiently mature and robust to b

30、e applied not onlyby a few expert laboratories but by laboratories operating at the routine level.The concept of these two approaches is strictly hierarchical, i.e. a method shall fulfil all criteria of the first level before it can enter the validation protocol of the second level. This Technical S

31、pecification is applicable to the validation of a broad range of quantitative physico-chemical analytical methods for the analysis of water (including surface water, groundwater, waste water, and sediment). Analytical methods for other environmental matrices, like soil, sludge, waste, and biota can

32、be validated in the same way. It is intended either for analytical methods aiming at substances that have recently become of interest or for test methods applying recently developed technologies. The minimal requirements that are indispensable for the characterization of the fitness for purpose of a

33、n analytical method are: selectivity, precision, bias and measurement uncertainty. The aim of validation is to prove that these requirements are met. 2 Normative references The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its applica

34、tion. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 78-2, Chemistry Layouts for standards Part 2: Methods of chemical analysis ISO 5725, Chemistry Layouts for standards Part 2: Metho

35、ds of chemical analysis ISO 11352:2012, Water quality Estimation of measurement uncertainty based on validation and quality control data ISO 21748:2010, Guidance for the use of repeatability, reproducibility and trueness estimates in measurement uncertainty estimation ISO/IEC Guide 99:2007, Internat

36、ional vocabulary of metrology Basic and general concepts and associated terms (VIM) 3 Terms and definitions For the purposes of this document, the terms and definitions given in ISO/IEC Guide 99:2007 (VIM) and the following apply. 3.1 accepted reference value value that serves as an agreed-upon refe

37、rence for comparison, and which is derived as: a) a theoretical or established value, based on scientific principles;PD CEN/TS 16800:2015 CEN/TS 16800:2015 (E) 7 b) an assigned or certified value, based on experimental work of some national or internationalorganization;c) a consensus or certified va

38、lue, based on collaborative experimental work under the auspices of ascientific or engineering group;d) when a), b) and c) are not available, the expectation of the (measurable) quantity, i.e. the mean of aspecified population of measurementsSOURCE: ISO 3534-2:2006, definition 3.2.7 3.2 accuracy clo

39、seness of agreement between a test result and the accepted reference value SOURCE: ISO 3534-2:2006, definition 3.3.1 Note 1 to entry: The term accuracy, when applied to a set of test results, involves a combination of random components (usually expressed by a precision measure) and a common systemat

40、ic error or bias component (usually expressed by a measure for trueness). Note 2 to entry: The technical term “accuracy“ should not be confused with the term trueness (see definition of “trueness“). 3.3 analyte substance to be analysed (chemical species or physical parameter) Note 1 to entry: The qu

41、antity of an analyte is the measurand (3.15). 3.4 bias difference between the expectation of a test result or measurement result and a true value Note 1 to entry: Bias is the total systematic error as contrasted to random error. There may be one or more systematic error components contributing to th

42、e bias. A larger systematic difference from the accepted reference value is reflected by a larger bias value. Note 2 to entry: The bias of a measuring instrument is normally estimated by averaging the error of indication over an appropriate number of repeated measurements. The error of indication is

43、 the: “indication of a measuring instrument minus a true value of the corresponding input quantity“. Note 3 to entry: In practice, accepted reference value is substituted for the true value. SOURCE: ISO 3534-2:2006, definition 3.3.2 3.5 blank sample or test scheme without the analyte known to produc

44、e the measured signal Note 1 to entry: Use of various types of blanks enable assessment of which proportion of the measured signal is attributable to the measurand and which proportion to other causes. Various types of blank are available (see definition of reagent blank and blank sample). PD CEN/TS

45、 16800:2015 CEN/TS 16800:2015 (E) 8 3.6 calibration operation that, under specified conditions, in a first step, establishes a relation between the quantity values with measurement uncertainties provided by measurement standards and corresponding indications with associated measurement uncertainties

46、 and, in a second step, uses this information to establish a relation for obtaining a measurement result from an indication Note 1 to entry: A calibration may be expressed by a statement, calibration function, calibration diagram, calibration curve, or calibration table. In some cases, it may consis

47、t of an additive or multiplicative correction of the indication with associated measurement uncertainty. Note 2 to entry: Calibration should not be confused with adjustment of a measuring system, often mistakenly called “self-calibration”, nor with verification of calibration. SOURCE: ISO/IEC Guide

48、99:2007, definition 2.39 3.7 certified reference material CRM reference material, accompanied by documentation issued by an authoritative body and providing one or more specified property values with associated uncertainties and traceabilities, using valid procedures SOURCE: ISO/IEC Guide 99:2007, d

49、efinition 5.14 3.8 fitness for purpose degree to which data produced by a measurement process enables a user to make technically and administratively correct decisions for a stated purpose 3.9 intermediate precision precision under intermediate precision conditions SOURCE: ISO 3534-2:2006, definition 3.3.15 3.10 intermediate precision conditions conditions where test results or measurement results are obtained with the same method, on identical test/measurement items in the same test or measurement facility, under some different operating conditio

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1