ImageVerifierCode 换一换
格式:PDF , 页数:14 ,大小:620.25KB ,
资源ID:653820      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-653820.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(DIN 17869-1992 Material properties of titanium and titanium alloys additional data《钛和钛合金的材料性能 附加说明》.pdf)为本站会员(sofeeling205)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

DIN 17869-1992 Material properties of titanium and titanium alloys additional data《钛和钛合金的材料性能 附加说明》.pdf

1、UDC 669.295 DEUTSCHE NORM June 1992 I I Properties of titanium and titanium alloys Information relating to DIN 17860 through DIN 17866 - DIN 17 869 - Werkstoffeigenschaften von Titan und Titanlegierungen; zustzliche Angaben In keeping with current practice in standards published by the International

2、 Organization for Standardization (ISO), a comma has been used throughout as the decimal marker. Contents Page 1 Scope and field of application 1 2 Physical properties 1 3 Ternperature-related properties 1 3.1 Tensile strength at elevated temperatures 1 3.2 Low temperature toughness 1 3.3 Notch impa

3、ct strength . 1 3.4 Rupture stress and creep limit 1 3.5 Designvalues 1 1 Scope and field of application This standard provides information regarding certain properties of titanium and titanium alloys, intended to complement the technical delivery conditions specified in DIN 17860 through DIN 17866.

4、 With regard to acceptance inspection, this information is not binding. Since the properties covered in this standard are not a function of the product form, they are summarized for ease of reading. Where a product is required to have one or more of the properties specified here, the property, the v

5、alue with which it is to comply, and the method of test shall be the subject of agreement at the time of ordering. 2 Physical properties Guideline values for the physical properties of titanium are given in table 1, those for titanium alloys, in table 2. 3 Temperature-related properties 3.1 Tensile

6、strength at elevated temperatures Guideline values for tensile strength at elevated tempera- tures are given in table 3. 3.2 Low temperature toughness The strength of titanium and titanium alloys increases in inverse proportion to the temperature. Titanium of low Page 4.1 Chipless forming 8 4.2 Hotf

7、orming 8 4.3 Annealing and pickling . 8 4.4 Machining 8 5 Heattreatment 8 6 Weldability 8 7 Corrosion resistance 9 Standards and other documents referred to . 14 4 Methods of working . 8 strength remains workable, and high-strength titanium does not become brittle, at very low temperatures (cf. tabl

8、e 4). The low temperature properties of titanium alloy grades TiA16V4 and TiA15Sn2,5 can be improved by adding low amounts of accompanying elements during the manufacturing process (cf. table 5). 3.3 Notch impact strength The notch impact strength of titanium grade Ti2, as a function of temperature,

9、 is illustrated in figure 1. Titanium is generally not susceptible to brittle fracture (as opposed to ferritic steel, which becomes brittle when the impact strength drops at higher temperatures). The notch impact strength nonetheless varies markedly as a function of temperature. 3.4 Guideline values

10、 for the rupture stress of titanium are given in table 6, those for the creep limit of certain tita- nium alloys, in table 7. Rupture stress and creep limit 3.5 Design values The design values (cf. table 8) are in accordance with the Technische Regeln fr Druckbehlter (Codes of practjce for pressure

11、vessels) and have been taken from VdUV- Werkstoffblatt (VdTV Materials sheet) 230. A factor of safety of 1,5 is to be taken into account, which may need to be adjusted in the case of fully loaded welded joints. Continued on pages 2 to 14 Beuth Verhg GrnbH, Berlin, has the exclusive right of sale for

12、 German Standards (DIN-Normen). DIN 17869 Engl. Price group 10 Sales No. 0110 09.93 Page 2 DIN 17869 Cu CO (u CO Cu m O 7 o O O d SE 0 .z E rn. E ZL .- O Cu .- BE rnG - .E o O Cu Cu O I O O a! I- O t Cu O t Cu O UJ“ I- Co c “9 P O Cu O O Tt Y- . -P a- O Cu o? O Cu o O Cu (9 Cu Cu a“ Cu Cu (4 Cu Cu O

13、 3 O c) o - O I- V) O m W - O b V) O k rn O Cu UJ O Cu V) O Cu V) DIN 17869 Page 3 TiA13V2,5 Table 2: Physical properties of titanium alloys (guideline values) 3.71 95 DensiM in g/m3 Material Thermal conductance, W in-, m-K Tensile strength, I?, in N/mm2, at a temperature, in “C, of Mean coefficient

14、 of linear thermal expansion, in -60C-1 at temperatures between 20 C and 200 “C TilPd F29 Ti2Pd F39 Ti3Pd F46 TiNiO,8MoO,3 F48 TiA15Fe2,5 F86 TiA15Sn2,5 F79 Modulus of elasticity, 3.7225.1 O 3.7235.1 O 3.7255.1 O 3.71 05.1 O 3.71 10.1 O 3.71 15.1 O Material designation 1 number Resistivity, Q - mm2

15、m in kN in mm2 at 100 CI 400 C 20 “C at 20C TiNiO,8Mo0,3 I 3.71 05 4,51 19,o 975 0,52 103 -I- - 116 TiA15Fe2,5 I 3.7110 973 4,45 4,48 4,55 4,43 434 4,60 4,48 1,57 110 TiA15Sn2,5 1 3.7115 7,95 5,86 7,12 6,50 734 8,O 975 1,91 114 TiAIGSn2Zr4Mo2Si 1 3.71 45 973 1,71 110 1 9,4 1,57 116 =I= 93) 81 ) 1,50

16、 117 9.3 1,26 1 03 I) Values have been obtained by interpolation. designation I number Til F29 I 3.7025.10 Ti2 F39 I 3.7035.10 Ti3 F46 I 3.7055.10 Ti4 F54 I 3.7065.10 TiA16Sn2Zr4Mo2Si F92 I 3.71 45.70 TiA16V4 F90 I 3.7165.10 TiA16V4 FI 05 I 3.7165.70 TiA16V6Sn2 F1 O0 I 3.71 75.1 O TiA16V6Sn2 F120 I

17、3.71 75.70 TiA14Mo4Sn2 F1 O0 I 3.71 85.70 TiA13V2,5 F62 I 3.7195.10 Page 4 DIN 17869 0,2 % proof stress, in N/mm*, at a temperature, in “C, of Table 4: Mechanical properties of unalloyed and low-alloy titanium at low temperature (guideline values) Tensile strength, Elongation at fracture, R, in N/mm

18、2, at a temperature, in “C, of A, in %, at a temperature, in “C, of Material designation number 37025 Til Til Pd 3.7225 37035 Ti2 Ti2Pd 3.7235 37055 Ti3 Ti3Pd 3 7255 Ti 3.7065 TiNiO,8MoO,3 3.71 05 -196 -70 20 -196 -70 20 -196 -70 20 450 290 240 800 500 350 50 50 45 700 450 330 900 630 470 25 30 35 8

19、50 580 440 1000 730 560 15 20 25 - - - - - - 480 640 25 580 440 730 560 20 25 - - - Tensile strength, R, in N/mm*, at a temperature, in “C, of 0,2 % proof stress, so,*, in N/mm2, at a temperature, in OC, of Temperature +20 -196 -253 -269 +20 -196 -253 -269 TiA15Sn2,5 805 1350 1580 1430 715 1160 1420

20、 1300 TiA16V4 930 1500 1810 1590 865 1390 1710 1530 Elongation at fracture, A, in %, at a temperature, in “C, of +20 -196 -253 -269 16 16 25 7 13 13 6 6 DIN 17869 Page 5 Material designation Ti 1 Ti2 Ti3 Ti4 300 250 t N 200 E i 7 c - ; 150 c 4- u3 o 2 E - 100 SO, I -2i Rupture stress, in N/mm*, at t

21、he following temperatures, in OC, after 10000 h 1 O0 O00 h 20 75 100 150 200 250 300 20 75 100 150 200 250 300 220 175 160 150 130 110 - 200 160 145 130 120 90 - 320 230 205 196 188 176 160 280 215 195 191 186 172 150 368 279 255 233 230 214 185 340 257 242 232 230 211 178 380 285 265 240 235 220 19

22、0 350 265 245 235 235 215 185 DVM specimen 8 tudinal / f I Single and mean values Minimum values o- -o 59 longitudinal 8-8 49 transverse I I I I I -100 o 100 200 300 4 Temperature, in “C - Figure 1: Impact strength of a plate made from Ti2 titanium (material number 3.7035), 30 mm thick, as a functio

23、n of temperature Table 6: Rupture stress of titanium (guideline values) Page6 DIN 17869 Temperature, in “C TiAIGSn2Zr4Mo2Si 3.71 45 TiA16V4 3.71 65 TiA14Mo4Sn2 3.71 85 Table 7: Creep limit of three titanium alloy grades (guideline values) 350 400 450 500 350 400 450 500 550 490 380 245 50 - - - - -

24、- 490 255 110 450 255 (85) 650 520 235 65 635 485 205 50 - - - I 0,l % creep limit, in N/mm2 I After a period of I 150 h I After a period of I 150 h l 300 h I 300 h Temperature, in “C TiAIGSn2Zr4Mo2Si 3.71 45 TiA16V4 3.71 65 TiA14Mo4Sn2 3.71 85 350 400 450 500 350 400 450 500 550 490 440 295 145 - -

25、 - - - - 550 305 135 600 345 165 680 565 235 665 540 260 - - - - - Table 8: Design values (taken from VdTV-Werkstoffblatt 230) I A factor of safety, S, of 1,5 and additional factors shall be taken into account. I N 3.7025 3.7035 v) -E “E s! Z 18 480 16 3 40 50 60 ?O Deformation, in % - Figure 2 Diag

26、rammatic representation of the strength of technical grade titanium (transverse test pieces, rolled in different directions, to a thickness of 0,7 mm) DIN 17 869 Page 7 t I= 0.18, I f c 0,008 m f 3.7025 , O 45 90 Position relative to direction of rolling, in degrees - Figure 3: Work hardening behavi

27、our of technical grade titanium, rolled in different directions relative to the plane of the plate s = 0,7 d=100mm 3.7035 -,- m 2 2.5 ._ 2 2,4 $ 2,3 c cn c ._ o cn .E c 2,2 2,5 Oto- 6 6 to 8 ss 73 to 40 0,l to 1,25 2,5 6 to +15 5 to 7 LT HM 15 to 25 0,2 to 0,4 23 Oto- 6 6 to 8 ss 3 to 15 0,l to 0,4

28、2,5 6 to +15 5 to 7 -4 O o to 5 - -4 O o to 5 - RT =technical grade titanium LT =titanium alloy HM = carbide tool SS = high-speed steel tool RT HM ss LT HM ss Table 10: Guideline values for milling parameters for titanium and titanium alloys 60 to 1 O0 0,l to 0,4 0,75 to 2.5 6to- 6 6 to 8 -4 O 18 to

29、 50 0,075 to 0,2 0,755 to 2,5 6 to +15 5 to 7 o to 5 - 20 to 50 0,l to 0,4 0,75 to 2,5 6to- 6 6 to 8 -4 O 5 to 15 0,075 to 0,2 0,75 to 2,5 6 to +15 5 to 7 o to 5 - RT HM 60 to 100 0,075 to 0,3 0,l to 0,75 O to 15 6 to 8 ss 20 to 50 0,05 to 0,l 0,l to 0,75 5tO 6 5 to 7 LT HM 20 to 70 0,075 to 0,3 0,l

30、 to 0,75 Oto15 6 to 8 ss 9 to 15 0,05 to 0,l 0,l to 0,75 5tO 6 5 to 7 -4 O o to 5 - -4 O o to 5 - The cleanliness of weld edges, edge zones, and the filler metal shall be ensured. Bare wire made from the same titanium grade shall be used as the filler metal (cf. DIN 1737 Part 1 for examples). TIG we

31、lding shall be carried out with a negative d.c. elec- trode. Welding shall be carried out in a workmanlike manner, .e. it is a function of the material, the conditions during work, the product geometry, and the service conditions (cf. DIN 8528 Part 1). Resistance spot and roller seam welding are par

32、ticularly suitable processes for well-cleaned plate, since the absorption of atmospheric gases is largely precluded by means of the pressure of the water-cooled electrode and the brief welding time. Cutting speed, in m/min Flame cutting and plasma cutting are also suitable weld- ing processes for ti

33、tanium. The heat-affected zone shall be removed by means of machining. Brazing chal be carried out by experienced personnel only, since titanium has a very dense passive layer (cf. clause 7). It is preferable to braze under vacuum or with a shielding gas, silvr alloys being most commonly used as fil

34、ler metals. Depth of cut Depth of cut (shell end mill), (hob), Feed, in mmtooth in mm in mm 7 Corrosion resistance At ambient and higher temperatures, titanium forms a tightly adhering, non-porous, self-healing surface oxide film called the passive layer. Titanium shall be deemed to be adequately re

35、sistant to corrosion where it is used in RT HM ss LT HM ss 25 to30 0,07 to 0.15 1,25 2,5 50 to60 0,l to 0,2 1,25 2,5 7,5 to 20 0,07 to 0,15 1,25 2,5 15 to30 0,l to 0,2 1,25 2,5 Page 10 DIN 17869 media which encourage the formation of this layer, such as oxidizing and neutral media, as well as deoxid

36、izing so- lutions containing small amounts of oxidizing elements (inhibitors). Corrosion resistance can be improved by anodic polarization. Similarly, the inclusion of palladium in titanium will increase the anodic,potential of the alloy and, under deoxidizing conditions, will improve the corrosion

37、resistance. Titanium is not corrosion-resistant when in contact with corrosive media which dissolve the passive iayer, such as hydrochloric acid, sulfuric acid and phosphoric acid in high concentration, and in media containing fluoride. Titanium is, however, resistant to chloride ions in inorganic m

38、edia such as brine, sea water and wet chlorine gas, and in many electrolytic solutions. Localized pitting may occur when titanium comes into contact with some chlorides of high concentration (e. g. aluminium, calcium, magnesium and zinc chloride) or at high service temperatures. Tita- nium is genera

39、lly not susceptible to crevice corrosion. Technical grade titanium and palladium-alloy titanium are generally not susceptible to stress-corrosion cracking, whereas titanium alloys with a high aluminium content are highly susceptible. it should also be noted that intercrys- talline stress-corrosion c

40、racking is likely where titanium is exposed to anhydrous methanol solutions. Extreme corro- sion attack, even spontaneous ignition, can be expected where titanium is exposed to dry chlorine gas or to anhy- drous, fuming nitric acid. Electrically connected titanium is very unsusceptible to corrosion;

41、 only precious metals have a higher potential in the passive state. Table 12 gives examples of the resistance of titanium to many elements. Where the corrosion behaviour of titanium is not known, it is recommended that corrosion testing under simulated service conditions be conducted. DIN 17869 Page

42、 11 I Ob WO 9; 2 8 I c 8 ._ E 8 ow o- -Cu O m ._ E WO S ._ E 8 OQ) rn 7 8: 9 I I I I .- E - Kn S m Y 8 .- 5 S m c CI .c c .- O e E CI m ?! CI 1 m Q I Y Q E I= A O c*l b O O LD Co c 1 O * Co O O O h . I O Co Co E Eo E .E 3 mc CI a A O LD Co O O rn * c rn m 7 2 J O rn Co O O O rn c 1 -. O O W O O LD 3

43、 -J O O W O O in B -I O O Co O O O rn c J -. -I O O O O rn Co O O O O in u3 * 3 - rn 4 2 in ? 2 rn Co 7 k CI I - - m a, .- L - E ,: c m 8 Kn V a, U ._ -t L o +g m. Page 12 DIN 17869 Table 12: Chemical resistance of titanium (guideline values) Corrosive medium Acetaldehyde Acetic acid Aluminium chlor

44、ide Ammonium carbamate Benzene + traces of HCI, NaCI, CS, Boric acid Chlorine gas, wetz) Chlorine gas, saturated with H,O Chlorine dioxide Chromic acid Formic acid, aerated Formic acid, unaerated Iron (Ill) chloride Aluminium chloride Aqua regia Calcium chloride Copper (I) chloride Copper (Il) chlor

45、ide Formaldehyde Formaldehyde Formic acid, unaerated Formic acid, unaerated Magnesium chloride Sodium chlorate Sodium chloride Sodium hydroxide Sodium hypochlorite Trichloroacetic acid Urea Aqua regia Aqua regia Calcium chloride Oxalic acid Oxalic acid Oxalic acid Phosphoric acid Sodium chloride Sod

46、ium hydroxide (containing chloride) Percentage by mass 1 O0 1 O0 25 50 Fluid 10 - - 1,5 gll 50 90 25 20 25 1:3 20 50 20 37 37 25 85 42 Saturated Saturated 40 15 50 75 - - 60 10 25 10 30 10 15 Temperature, in “C 150 1 O0 40 1 O0 80 Boiling 75 75 10 80 1 O0 1 O0 Boiling Boiling 20 1 O0 90 1 O0 Boiling

47、 Boiling Boiling Boiling Boiling 20 Boiling 75 20 Boiling 190 (at 180 bar) 20 60 150 60 60 35 35 188 20 Corrosion loss1) None A A None A A A A A B A C A A B A A A None A None None None B A A None None B None A None B B A A A None (continued) DIN 17869 Page 13 Table 12: (concluded) Corrosive medium A

48、cid mixtures 10%HCI+0,7%HNO, 10% HCI + 1 % HNO, 50 % HZSO, + 50 % HNO, 80 % HzS04 + 20 % HNO, 90 % H,SO, + 1 O % HNO, 65 % H,SO, + 0.05 % HNO, 50 % HZSO, + 50 % HNO, Nitric acid, aerated Nitric acid, aerated Nitric acid, unaerated Phosphoric acid Phosphoric acid Phosphoric acid Nitric acid Hydrochlo

49、rid acid, aerated Hydrochlorid acid, aerated Hydrochlorid acid, aerated Hydrochlorid acid, aerated Hydrochlorid acid, aerated Hydrochlorid acid, aerated Hydrochlorid acid, + 0,5 % CuSO, Hydrochlorid acid, + 0,5 % CuSO, Hydrochlorid acid, + 0,5 % CrO, Sulfric acid Sulfric acid Sulfric acid + 0,5 % CuSO, Sulfuric acid Sea water Sea air Sulfric acid, unaerated Sulfric acid, unaerated Sulfric acid, aerated Sulfric acid, aerated Sulfric acid, aerated Sulfric acid, aerated Sulfric acid, aerated Citric acid Percentage by mass - - - -

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1