ImageVerifierCode 换一换
格式:PDF , 页数:23 ,大小:597.38KB ,
资源ID:668006      下载积分:10000 积分
快捷下载
登录下载
邮箱/手机:
温馨提示:
如需开发票,请勿充值!快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝扫码支付 微信扫码支付   
注意:如需开发票,请勿充值!
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【http://www.mydoc123.com/d-668006.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(DIN EN 15188-2007 Determination of the spontaneous ignition behaviour of dust accumulations English version of DIN EN 15188 2007-11《尘埃积聚物自发着火性的测定》.pdf)为本站会员(周芸)主动上传,麦多课文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知麦多课文库(发送邮件至master@mydoc123.com或直接QQ联系客服),我们立即给予删除!

DIN EN 15188-2007 Determination of the spontaneous ignition behaviour of dust accumulations English version of DIN EN 15188 2007-11《尘埃积聚物自发着火性的测定》.pdf

1、November 2007DEUTSCHE NORM English price group 12No part of this standard may be reproduced without prior permission ofDIN Deutsches Institut fr Normung e. V., Berlin. Beuth Verlag GmbH, 10772 Berlin, Germany,has the exclusive right of sale for German Standards (DIN-Normen).ICS 13.230!$JD_“1393360ww

2、w.din.deDDIN EN 15188Determination of the spontaneous ignition behaviour of dustaccumulationsEnglish version of DIN EN 15188:2007-11Bestimmung des Selbstentzndungsverhaltens von StaubschttungenEnglische Fassung DIN EN 15188:2007-11www.beuth.deDocument comprises 23 pagesDIN EN 15188:2007-11 2 Nationa

3、l foreword This standard has been prepared by Working Group WG 1 “Test methods for determining the flammability characteristics of substances” of Technical Committee CEN/TC 305 “Potentially explosive atmospheres Explosion prevention and protection” (Secretariat: DIN, Germany). The responsible German

4、 body involved in its preparation was the Normenausschuss Sicherheitstechnische Grundstze (Safety Design Principles Standards Committee), Technical Committee NA 095-02-04 AA Stube (Kenngren). EUROPEAN STANDARDNORME EUROPENNEEUROPISCHE NORMEN 15188August 2007ICS 13.230English VersionDetermination of

5、the spontaneous ignition behaviour of dustaccumulationsDtermination de laptitude lauto-inflammation desaccumulations de poussiresBestimmung des Selbstentzndungsverhaltens vonStaubschttungenThis European Standard was approved by CEN on 13 July 2007.CEN members are bound to comply with the CEN/CENELEC

6、 Internal Regulations which stipulate the conditions for giving this EuropeanStandard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such nationalstandards may be obtained on application to the CEN Management Centre or to any CEN

7、member.This European Standard exists in three official versions (English, French, German). A version in any other language made by translationunder the responsibility of a CEN member into its own language and notified to the CEN Management Centre has the same status as theofficial versions.CEN membe

8、rs are the national standards bodies of Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland,France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal,Romania, Slovakia, Slovenia, Spain, Sweden, Swi

9、tzerland and United Kingdom.EUROPEAN COMMITTEE FOR STANDARDIZATIONCOMIT EUROPEN DE NORMALISATIONEUROPISCHES KOMITEE FR NORMUNGManagement Centre: rue de Stassart, 36 B-1050 Brussels 2007 CEN All rights of exploitation in any form and by any means reservedworldwide for CEN national Members.Ref. No. EN

10、 15188:2007: EEN 15188:2007 (E) 2 Contents Page Foreword3 Introduction .4 1 Scope 5 2 Terms and definitions .5 3 Test apparatus .6 3.1 Sample baskets6 3.2 Oven 6 3.3 Thermocouples 6 3.4 Temperature recording equipment 6 4 Preparation of dust samples 6 5 Procedure .8 5.1 Experimental Procedure .8 5.2

11、 Evaluation of tests.9 5.3 Calibration of thermocouples.10 6 Test report 11 Annex A (informative) Evaluation of experimental results for self-ignition temperatures 13 A.1 Introduction13 A.2 Methods based on the thermal explosion theory.13 A.3 Numerical solution of Fouriers equation .16 Annex ZA (inf

12、ormative) Relationship between this European Standard and the Essential Requirements of EU Directive 94/9/EC 20 Bibliography 21 EN 15188:2007 (E) 3 Foreword This document (EN 15188:2007) has been prepared by Technical Committee CEN/TC 305 “Potentially explosive atmospheres - Explosion prevention and

13、 protection”, the secretariat of which is held by DIN. This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by February 2008, and conflicting national standards shall be withdrawn at the latest by Februar

14、y 2008. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. CEN and/or CENELEC shall not be held responsible for identifying any or all such patent rights. This document has been prepared under a mandate given to CEN by the European C

15、ommission and the European Free Trade Association, and supports essential requirements of EU Directive 94/9/EC. For relationship with EU Directive 94/9/EC, see informative Annex ZA, which is an integral part of this document. According to the CEN/CENELEC Internal Regulations, the national standards

16、organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portuga

17、l, Romania, Slovakia, Slovenia, Spain, Sweden, Switzerland and the United Kingdom. EN 15188:2007 (E) 4 Introduction The self-ignition behaviour of combustible dusts depends on their chemical composition as well as on related substance properties. It also depends on the size and geometry of the body

18、of material, and, last but not least on the ambient temperature. The reason behind self-heating (or possibly self-ignition) is that the surface molecules of combustible dust particles undergo exothermic reactions with the oxygen in air transported into the void volume between the particles even at n

19、ormal temperatures. Any heat then released will cause the temperature of the reactive dust-air system to rise, thus accelerating the reaction of additional dust molecules with oxygen, etc. A heat balance involving the heat produced inside the bulk (quantity and surface of reactive surface molecules,

20、 specific heat producing rate) and the heat loss to the surroundings (heat conductivity and dimension of the bulk, heat transfer coefficient on the outside surface of the bulk and the size of the latter) is decisive as to whether a steady state temperature is reached at a slightly higher temperature

21、 level (the heat loss terms are larger than the heat production term), or whether temperatures in the bulk will continue to rise up to self-ignition of the dust, if heat transport away from the system is insufficient (in this case the heat production term is larger than all heat losses). The experim

22、ental basis for describing the self-ignition behaviour of a given dust is the determination of the self-ignition temperatures (TSI) of differently-sized bulk volumes of the dust by isoperibol hot storage experiments (storage at constant oven temperatures) in commercially available ovens. The results

23、 thus measured reflect the dependence of self-ignition temperatures upon dust volume. Plotting the logarithms of the volume/surface ratios lg (V/A) of differently sized dust deposits versus the reciprocal values of the respective self-ignition temperatures 1/TSIin K-1 or following other evaluation p

24、rocedures described in Annex A one produces straight lines, allowing interpolation, to characterise the self-ignition behaviour of dust deposits of a different scale and of a different bulk geometric shapes (see 5.1). Experience has shown that the spread of slopes of such straight lines determined b

25、y different laboratories using differently constructed ovens is fairly large. This is the reason why scale up of those results to industrial scale will lead to non-negligible errors in TSI. Experience has shown, that it seems necessary to prescribe the installation of a unique inner chamber into the

26、 oven, surrounding the dust samples and the thermocouples, with an also prescribed air flow through this chamber. In this way the spread of results should be minimised. Decisions on the design of this inner chamber and on the amount of air flow respectively other test setups leading to comparable re

27、sults have to be carried out later on. If it is possible based on suitable thermo analytic test procedures (adiabatic, isothermal or dynamic tests) to derive a reliable formal kinetic model, which describes the heat production of the substance as a function of temperature, then the volume dependency

28、 of the self-ignition temperature may be calculated according to the methods described in Annex A. EN 15188:2007 (E) 5 1 Scope This European Standard specifies analysis and evaluation procedures for determining self-ignition temperatures (TSI) of combustible dusts or granular materials as a function

29、 of volume by hot storage experiments in ovens of constant temperature. The specified test method is applicable to any solid material for which the linear correlation of lg (V/A) versus the reciprocal self-ignition temperature 1/TSI(with TSIin K) holds (i.e. not limited to only oxidatively unstable

30、materials). This European Standard is not applicable to the ignition of dust layers or bulk solids under aerated conditions (e.g. as in fluid bed dryer). This European Standard should not be applied to dusts like recognised explosives that do not require atmospheric oxygen for combustion, nor to pyr

31、ophoric materials. NOTE Because of regulatory and safety reasons “recognised explosives” are not in the scope of this European Standard. In spite of that, substances which undergo thermal decomposition reactions and which are not “recognised explosives” but behave very similarly to self-ignition pro

32、cesses when they decompose are in the scope. If there are any doubts as to whether the dust is an explosive or not, experts should be consulted. 2 Terms and definitions For the purposes of this document, the following terms and definitions apply. 2.1 self-ignition temperature TSIhighest temperature

33、at which a given volume of dust just does not ignite NOTE Self-ignition temperature is expressed in C. 2.2 oven temperature arithmetic mean of the measured values of two thermocouples, both freely installed in an oven at half the distance between the wall and the surface of the dust sample NOTE Oven

34、 temperature is expressed in C. 2.3 sample temperature temperature measured at the centre of the dust sample using a thermocouple NOTE Sample temperature is expressed in C. 2.4 induction time interval of time between reaching the storage temperature and an ignition NOTE Induction time is expressed i

35、n h. 2.5 ignition initiation of combustion EN 13478:2001, 3.20 EN 15188:2007 (E) 6 3 Test apparatus 3.1 Sample baskets The samples have to be loosely filled into mesh wire baskets of different volumes. The baskets have to be open at the top and closed at the bottom. They consist of a narrow-meshed w

36、ire net, made of e.g. stainless steel. The width of the mesh has to be chosen in such a way that the dust cannot fall through the mesh, but the diffusion of oxygen from the oven air into the dust sample is not hindered. Recommended shapes of the mesh wire baskets are that of a cylinder with a height

37、 to diameter ratio of 1 or that of a cube. To allow an assessment of the self-ignition behaviour of dust accumulations of larger sizes than the laboratory-scale at least three mesh wire baskets of different volumes have to be used for the tests. NOTE 1 A higher level of certainty is achieved with fo

38、ur different sample volumes. The smallest volume should normally be in the order of 10 cm3and the largest should normally not be smaller than approximately 1 l. If only a limited amount of sample material is available, even smaller baskets may be used. However it has to be assured that the volume of

39、 the basket following in a series exceeds that of the previous one by a factor of 2 at a minimum. NOTE 2 For the sake of comparing products with respect to their self-ignition behaviour in devices or apparatus, where the sizes of the dust accumulations are limited for the reason of a specific design

40、, often the determination of the self-ignition temperature for a basket of 400 cm3or 1 000 cm3is sufficient. 3.2 Oven Commercially available ovens can be used. They shall have an air inlet opening in the lower section and an air outlet opening in the upper section (see schematic drawing in Figure 1)

41、. They should have a useful volume of about 120 l (enabling the installation of an inner chamber into the oven, surrounding the dust samples and the thermocouples, being equipped with an upstream heat exchanger consisting of copper tube coils) and be controllable in a temperature range from 35 C to

42、300 C. This construction enables a prescribed air flow through this chamber. The oven temperature shall be stable within a range of 1 % of the respective oven temperature. Alternative test arrangements can be used to provide the specified test conditions. For example, the test basket can be shielded

43、 by placing it inside an additional mesh wire basket. Mechanically ventilated ovens can also be used provided the test basket is shielded (e.g. by using an inner chamber or an additional mesh wire basket). 3.3 Thermocouples Both for measuring the sample temperature as well as for measuring the oven

44、temperature, sheathed thermocouples with an external diameter of e.g. 1 mm are recommended. 3.4 Temperature recording equipment Appropriate data acquisition may be used for measuring and recording signals of the thermocouples. 4 Preparation of dust samples To investigate situations occurring in prac

45、tice a representative sample should be used (produced by the operating conditions of the process). The sample characteristics shall be recorded in the test report. The bulk density of the dust for each experiment is determined by weighing the baskets as well as the moisture content of the dust befor

46、e and after filling. EN 15188:2007 (E) 7 Key 1 heating oven 5 thermocouple for measuring sample temperature 2 inner chamber (volume 50 l) 6 wire gauze cylinder with dust sample 3 air outlet, diameter 10 mm 7 deflector 4 thermocouple for measuring oven temperature 8 air inlet (preheated air, adjustab

47、le flow rate), diameter 8 mm Figure 1 Suggested experimental setup for hot storage tests If the results are required to compare different dusts with each other (for the purpose of tabular data compilations), tests shall to be carried out with the dust having passed through a sieve of 250 m mesh aper

48、ture and dried to constant weight at 50 C in a vacuum drying chamber. If necessary, the substance may be ground and/or sieved. All preparation procedures shall be recorded and included in the report, especially when altering the grain size, quoting the grain size distribution of the sample tested. E

49、N 15188:2007 (E) 8 5 Procedure 5.1 Experimental Procedure The test basket shall be filled with the dust sample by tapping it several times. Then remove any surplus dust from the upper margin and position the basket at the centre of the oven that has been preheated to the test temperature. The thermocouple for measuring the sample temperature is to be positioned with its hot junction directly at the centre of the sample. The hot junctions of two additional thermocouples on opposite sides will be freely installed in the air space, each at

copyright@ 2008-2019 麦多课文库(www.mydoc123.com)网站版权所有
备案/许可证编号:苏ICP备17064731号-1